Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-662-52921-8_13guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Causality in Bounded Petri Nets is MSO Definable

Published: 16 August 2016 Publication History

Abstract

In this work we show that the causal behaviour of any bounded Petri net is definable in monadic second order MSO logic. Our proof relies in a definability vs recognizability result for DAGs whose edges and vertices can be covered by a constant number of paths. Our notion of recognizability is defined in terms of saturated slice automata, a formalism for the specification of infinite families of graphs. We show that a family $$\mathfrak {G}$$ of k-coverable DAGs is recognizable by a saturated slice automaton if and only if $$\mathfrak {G}$$ is definable in monadic second order logic. This result generalizes Büchi's theorem from the context of strings, to the context of k-coverable DAGs.

References

[1]
Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Math. Syst. Theor. 202---3, 83---127 1987
[2]
Bodlaender, H.L., Heggernes, P., Telle, J.A.: Recognizability equals definability for graphs of bounded treewidth and bounded chordality. In: Proceedings of the 7th European Conference on Combinatorics EUROCOMB 2015 2015
[3]
Brandenburg, F.-J., Skodinis, K.: Finite graph automata for linear and boundary graph languages. Theor. Comput. Sci. 3321---3, 199---232 2005
[4]
Bruggink, H.S., König, B.: On the recognizability of arrow and graph languages. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. eds. ICGT 2008. LNCS, vol. 5214. Springer, Heidelberg 2008
[5]
Büchi, J.R.: Weak second order arithmetic and finite automata. Z. Math. Logik Grundl. Math. 6, 66---92 1960
[6]
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 851, 12---75 1990
[7]
Courcelle, B.: The monadic second-order logic of graphs V: on closing the gap between definability and recognizability. Theor. Comput. Sci. 802, 153---202 1991
[8]
Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach, vol. 138. Cambridge University Press, Cambridge 2012
[9]
de Oliveira Oliveira, M.: Hasse diagram generators and Petri nets. Fundamenta Informaticae 1053, 263---289 2010
[10]
de Oliveira Oliveira, M.: Canonizable partial order generators. In: Dediu, A.-H., Martín-Vide, C. eds. LATA 2012. LNCS, vol. 7183, pp. 445---457. Springer, Heidelberg 2012
[11]
de Oliveira Oliveira, M.: Subgraphs satisfying MSO properties on z-topologically orderable digraphs. In: Gutin, G., Szeider, S. eds. IPEC 2013. LNCS, vol. 8246, pp. 123---136. Springer, Heidelberg 2013
[12]
de Oliveira Oliveira, M.: MSO logic and the partial order semantics of place/transition-nets. In: Leucker, M., Rueda, C., Valencia, F.D. eds. ICTAC 2015. LNCS, vol. 9399, pp. 368---387. Springer, Heidelberg 2015.
[13]
Engelfriet, J., Vereijken, J.J.: Context-free graph grammars and concatenation of graphs. Acta Informatica 3410, 773---803 1997
[14]
Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation of functions. In: LICS 1987, pp. 72---85 1987
[15]
Gischer, J.L.: The equational theory of pomsets. Theor. Comput. Sci. 61, 199---224 1988
[16]
Goltz, U., Reisig, W.: Processes of place/transition-nets. In: Díaz, J. ed. ICALP 1983. LNCS, vol. 154, pp. 264---277. Springer, Heidelberg 1983
[17]
Jaffke, L., Bodlaender, H.L.: Definability equals recognizability for k-outerplanar graphs. In: Proceedings of the 10th International Symposium on Parameterized and Exact Computation, IPEC 2015. LIPIcs, vol. 43, pp. 175---186 2015
[18]
Jaffke, L., Bodlaender, H.L.: MSOL-definability equals recognizability for Halin graphs and bounded degree $$k$$-outerplanar graphs 2015. Preprint arXiv:1503.01604
[19]
Jagadeesan, L.J., Jagadeesan, R.: Causality and true concurrency: a data-flow analysis of the pi-calculus. In: Alagar, V.S., Nivat, M. eds. AMAST 1995. LNCS, vol. 936, pp. 277---291. Springer, Heidelberg 1995
[20]
Kabanets, V.: Recognizability equals definability for partial $$k$$-paths. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. eds. ICALP 1997. LNCS, vol. 1256, pp. 805---815. Springer, Heidelberg 1997
[21]
Kaller, D.: Definability equals recognizability of partial 3-trees and $$k$$-connected partial $$k$$-trees. Algorithmica 273---4, 348---381 2000
[22]
Langerak, R., Brinksma, E., Katoen, J.-P.: Causal ambiguity and partial orders in event structures. In: Mazurkiewicz, A., Winkowski, J. eds. CONCUR 1997. LNCS, vol. 1243, pp. 317---331. Springer, Heidelberg 1997
[23]
Lapoire, D.: Recognizability equals monadic second-order definability for sets of graphs of bounded tree-width. In: Morvan, M., Meinel, C., Krob, D. eds. STACS 1998. LNCS, vol. 1373, pp. 618---628. Springer, Heidelberg 1998
[24]
Petri, C.A.: Fundamentals of a theory of asynchronous information flow. In: Proceedings of IFIP Congress 62, Munchen, pp. 166---168 1962
[25]
Thomas, W.: Finite-state recognizability of graph properties. Theorie des Automates et Applications 172, 147---159 1992
[26]
Vogler, W. ed.: Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625. Springer, Heidelberg 1992

Index Terms

  1. Causality in Bounded Petri Nets is MSO Definable
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      Proceedings of the 23rd International Workshop on Logic, Language, Information, and Computation - Volume 9803
      August 2016
      445 pages
      ISBN:9783662529201
      • Editors:
      • Jouko Väänänen,
      • Åsa Hirvonen,
      • Ruy De Queiroz

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 16 August 2016

      Author Tags

      1. Definability
      2. Monadic second order logic
      3. Partial order behaviour of Petri nets
      4. Recognizability

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 14 Dec 2024

      Other Metrics

      Citations

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media