Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-642-36594-2_18guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Succinct non-interactive arguments via linear interactive proofs

Published: 03 March 2013 Publication History

Abstract

Succinct non-interactive arguments (SNARGs) enable verifying NP statements with lower complexity than required for classical NP verification. Traditionally, the focus has been on minimizing the length of such arguments; nowadays researches have focused also on minimizing verification time, by drawing motivation from the problem of delegating computation.
A common relaxation is a preprocessing SNARG, which allows the verifier to conduct an expensive offline phase that is independent of the statement to be proven later. Recent constructions of preprocessing SNARGs have achieved attractive features: they are publicly-verifiable, proofs consist of only O(1) encrypted (or encoded) field elements, and verification is via arithmetic circuits of size linear in the NP statement. Additionally, these constructions seem to have 'escaped the hegemony' of probabilistically-checkable proofs (PCPs) as a basic building block of succinct arguments.

References

[1]
Aiello, W., Bhatt, S., Ostrovsky, R., Rajagopalan, S. R.: Fast Verification of Any Remote Procedure Call: Short Witness-Indistinguishable One-Round Proofs for NP. In: Welzl, E., Montanari, U., Rolim, J. D. P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 463-474. Springer, Heidelberg (2000)
[2]
Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P. G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152-163. Springer, Heidelberg (2010)
[3]
Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501-555 (1998); Preliminary version in FOCS 1992
[4]
Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs and their efficiency benefits. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 255-272. Springer, Heidelberg (2012)
[5]
Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences 37(2), 156-189 (1988)
[6]
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS 2012), pp. 326-349 (2012)
[7]
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKs and proof-carrying data. Cryptology ePrint Archive, Report 2012/095 (2012)
[8]
Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Omer, P.: Succinct non-interactive arguments via linear interactive proofs. Cryptology ePrint Archive, Report 2012 (2012)
[9]
Babai, L., Fortnow, L., Levin, L. A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (STOC 1991), pp. 21-32 (1991)
[10]
Barak, B., Goldreich Universal, O.: arguments and their applications. SIAM Journal on Computing 38(5), 1661-1694 (2008); Preliminary version appeared in CCC 2002
[11]
Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111-131. Springer, Heidelberg (2011)
[12]
Boppana, R. B., Håstad, J., Zachos, S.: Does co-NP have short interactive proofs? Information Processing Letters 25(2), 127-132 (1987)
[13]
Bellare, M., Palacio, A.: The Knowledge-of-Exponent Assumptions and 3- Round Zero-Knowledge Protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273-289. Springer, Heidelberg (2004)
[14]
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concreteefficiency threshold of probabilistically-checkable proofs. Electronic Colloquium on Computational Complexity, TR12-045 (2012)
[15]
Ben-Sasson, E., Harsha, P., Lachish, O., Matsliah, A.: Sound 3-Query PCPPs are Long. ACM Transactions on Computation Theory 1(2), 7:1- 7:49 (2009); Preliminary version appeared in: Aceto, L., Damgård, I., Goldberg, L. A., Halldórsson, M. M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 686-697. Springer, Heidelberg (2008)
[16]
Boneh, D., Segev, G., Waters, B.: Targeted malleability: Homomorphic encryption for restricted computations. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS 1912), pp. 350-366 (2012)
[17]
Bogdanov, A., Viola, E.: Pseudorandom bits for polynomials. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 41-51 (2007)
[18]
Chung, K.-M., Kalai, Y., Vadhan, S.: Improved Delegation of Computation Using Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483-501. Springer, Heidelberg (2010)
[19]
Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS 2012), pp. 90-112 (2012)
[20]
Canetti, R., Riva, B., Rothblum, G. N.: Two 1-round protocols for delegation of computation. Cryptology ePrint Archive, Report 2011/518 (2011)
[21]
Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive proofs. Proceedings of the VLDB Endowment 5(1), 25-36 (2011)
[22]
Damgård, I. B.: Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445-456. Springer, Heidelberg (1992)
[23]
Di Crescenzo, G., Lipmaa, H.: Succinct NP Proofs from an Extractability Assumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 175-185. Springer, Heidelberg (2008)
[24]
Damgård, I. B., Faust, S., Hazay, C.: Secure Two-Party Computation with Low Communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54-74. Springer, Heidelberg (2012)
[25]
Dwork, C., Feige, U., Kilian, J., Naor, M., Safra, M.: Low Communication 2-Prover Zero-Knowledge Proofs for NP. In: Brickell, E. F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 215-227. Springer, Heidelberg (1993)
[26]
Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for polynomial sources. Computational Complexity 18(1), 1-58 (2009)
[27]
Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct NP proofs and spooky interactions (December 2004), www.openu.ac.il/home/mikel/papers/spooky.ps
[28]
El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469-472 (1985)
[29]
Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. Cryptology ePrint Archive, Report 2012/281 (2012)
[30]
Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A. M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186-194. Springer, Heidelberg (1987)
[31]
Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465-482. Springer, Heidelberg (2010)
[32]
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. Cryptology ePrint Archive, Report 2012/215 (2012)
[33]
Goldreich, O., Håstad, J.: On the complexity of interactive proofs with bounded communication. Information Processing Letters 67(4), 205-214 (1998)
[34]
Goldwasser, S., Kalai, Y. T., Rothblum, G. N.: Delegating computation: Interactive proofs for Muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC 2008), pp. 113-122 (2008)
[35]
Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejection problem from designated verifier CS-proofs. Cryptology ePrint Archive, Report 2011/456 (2011)
[36]
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(1), 186-208 (1989); Preliminary version appeared in STOC 1985
[37]
Gabizon, A., Raz, R.: Deterministic extractors for affine sources over large fields. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 407-418 (2005)
[38]
Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321- 340. Springer, Heidelberg (2010)
[39]
Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a laconic prover. Computational Complexity 11(1/2), 1-53 (2002)
[40]
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC 2011), pp. 99-108 (2011)
[41]
Håstad, J., Khot, S.: Query efficient PCPs with perfect completeness. Theory of Computing 1(1), 119-148 (2005)
[42]
Hada, S., Tanaka, T.: On the Existence of 3-Round Zero-Knowledge Protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408- 423. Springer, Heidelberg (1998)
[43]
Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: Proceedings of the Twenty-Second Annual IEEE Conference on Computational Complexity (CCC 2007), pp. 278-291 (2007)
[44]
Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC 1992), pp. 723-732 (1992)
[45]
Kalai, Y. T., Raz, R.: Interactive PCP. In: Aceto, L., Damgård, I., Goldberg, L. A., Halldórsson, M. M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 536-547. Springer, Heidelberg (2008)
[46]
Kalai, Y. T., Raz, R.: Probabilistically Checkable Arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 143-159. Springer, Heidelberg (2009)
[47]
Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169-189. Springer, Heidelberg (2012)
[48]
Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1-23. Springer, Heidelberg (2010)
[49]
Meir, O.: Combinatorial PCPs with short proofs. In: Proceedings of the 26th Annual IEEE Conference on Computational Complexity (CCC 2012) (2012)
[50]
Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4), 1253-1298 (2000); Preliminary version appeared in FOCS 1994
[51]
Mie, T.: Polylogarithmic two-round argument systems. Journal of Mathematical Cryptology 2(4), 343-363 (2008)
[52]
Naor, M.: On Cryptographic Assumptions and Challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96-109. Springer, Heidelberg (2003)
[53]
Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (STOC 1990), pp. 213-223 (1990)
[54]
Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238. Springer, Heidelberg (1999)
[55]
Petit, C., Quisquater, J.-J.: On Polynomial Systems Arising from a Weil Descent. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 451-466. Springer, Heidelberg (2012)
[56]
Setty, S., Braun, B., Vu, V., Blumberg, A. J., Parno, B., Walfish, M.: Resolving the conflict between generality and plausibility in verified computation. Cryptology ePrint Archive, Report 2012/622 (2012)
[57]
Setty, S., Blumberg, A. J., Walfish, M.: Toward practical and unconditional verification of remote computations. In: Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems (HotOS 2013), p. 29 (2011)
[58]
Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869-877 (1992)
[59]
Setty, S., McPherson, M., Blumberg, A. J., Walfish, M.: Making argument systems for outsourced computation practical (sometimes). In: Proceedings of the 2012 Network and Distributed System Security Symposium (NDSS 2012) (2012)
[60]
Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A. J., Walfish, M.: Taking proof-based verified computation a few steps closer to practicality. In: Proceedings of the 21st USENIX Security Symposium (Security 2012) (2012)
[61]
Valiant, L. G.: Graph-Theoretic Arguments in Low-Level Complexity. In: Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162-176. Springer, Heidelberg (1977)
[62]
Wee, H.: On round-efficient argument systems. In: Caires, L., Italiano, G. F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 140-152. Springer, Heidelberg (2005)

Cited By

View all
  1. Succinct non-interactive arguments via linear interactive proofs

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      TCC'13: Proceedings of the 10th theory of cryptography conference on Theory of Cryptography
      March 2013
      722 pages
      ISBN:9783642365935
      • Editor:
      • Amit Sahai

      Sponsors

      • IACR: International Association for Cryptologic Research

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 03 March 2013

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 05 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media