Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-642-32937-1_3guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Geometric semantic genetic programming

Published: 01 September 2012 Publication History

Abstract

Traditional Genetic Programming (GP) searches the space of functions/programs by using search operators that manipulate their syntactic representation, regardless of their actual semantics/behaviour. Recently, semantically aware search operators have been shown to outperform purely syntactic operators. In this work, using a formal geometric view on search operators and representations, we bring the semantic approach to its extreme consequences and introduce a novel form of GP --- Geometric Semantic GP (GSGP) --- that searches directly the space of the underlying semantics of the programs. This perspective provides new insights on the relation between program syntax and semantics, search operators and fitness landscape, and allows for principled formal design of semantic search operators for different classes of problems. We derive specific forms of GSGP for a number of classic GP domains and experimentally demonstrate their superiority to conventional operators.

References

[1]
Beadle, L., Johnson, C.G.: Sematically driven crossover in genetic programming. In: Proc. of IEEE WCCI 2008, pp. 111-116 (2008).
[2]
Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in genetic programming. Genetic Programming and Evolvable Machines 10(3), 307-337 (2009).
[3]
Beadle, L., Johnson, C.G.: Semantically driven mutation in genetic programming. In: Proc. of IEEE CEC 2009, pp. 1336-1342 (2009).
[4]
Jackson, D.: Phenotypic Diversity in Initial Genetic Programming Populations. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.S. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 98-109. Springer, Heidelberg (2010).
[5]
Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: Proc. of GECCO 2009, pp. 987-994 (2009).
[6]
Krawiec, K., Wieloch, B.: Analysis of semantic modularity for genetic programming. Foundations of Computing and Decision Sciences 34(4), 265-285 (2009).
[7]
Luke, S.: The ECJ Owner's Manual - A User Manual for the ECJ Evolutionary Computation Library (2010).
[8]
Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms. PhD thesis, University of Essex (2007).
[9]
Moraglio, A.: Abstract convex evolutionary search. In: Proc. of FOGA 2011, pp. 151-162 (2011).
[10]
Moraglio, A., Poli, R.: Topological Interpretation of Crossover. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1377-1388. Springer, Heidelberg (2004).
[11]
Uy, N.Q., et al.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genetic Programming and Evolvable Machines 12(2), 91-119 (2011).

Cited By

View all
  • (2024)On the Generalisation Performance of Geometric Semantic Genetic Programming for Boolean Functions: Learning Block MutationsACM Transactions on Evolutionary Learning and Optimization10.1145/36771244:4(1-33)Online publication date: 16-Jul-2024
  • (2024)A Functional Analysis Approach to Symbolic RegressionProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3654079(859-867)Online publication date: 14-Jul-2024
  • (2024)An ensemble learning interpretation of geometric semantic genetic programmingGenetic Programming and Evolvable Machines10.1007/s10710-024-09482-625:1Online publication date: 11-Mar-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
PPSN'12: Proceedings of the 12th international conference on Parallel Problem Solving from Nature - Volume Part I
September 2012
541 pages
ISBN:9783642329364
  • Editors:
  • Carlos Coello Coello,
  • Vincenzo Cutello,
  • Kalyanmoy Deb,
  • Stephanie Forrest,
  • Giuseppe Nicosia

Sponsors

  • ESTECO: ESTECO
  • SolveIT: SolveIT Software Pty Ltd
  • IBM Italy: IBM Italy

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)On the Generalisation Performance of Geometric Semantic Genetic Programming for Boolean Functions: Learning Block MutationsACM Transactions on Evolutionary Learning and Optimization10.1145/36771244:4(1-33)Online publication date: 16-Jul-2024
  • (2024)A Functional Analysis Approach to Symbolic RegressionProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3654079(859-867)Online publication date: 14-Jul-2024
  • (2024)An ensemble learning interpretation of geometric semantic genetic programmingGenetic Programming and Evolvable Machines10.1007/s10710-024-09482-625:1Online publication date: 11-Mar-2024
  • (2024)Cellular geometric semantic genetic programmingGenetic Programming and Evolvable Machines10.1007/s10710-024-09480-825:1Online publication date: 21-Feb-2024
  • (2024)Symbol Graph Genetic Programming for Symbolic RegressionParallel Problem Solving from Nature – PPSN XVIII10.1007/978-3-031-70055-2_14(221-237)Online publication date: 14-Sep-2024
  • (2024)SLIM_GSGP: The Non-bloating Geometric Semantic Genetic ProgrammingGenetic Programming10.1007/978-3-031-56957-9_8(125-141)Online publication date: 3-Apr-2024
  • (2023)Inductive Program Synthesis Guided by Observational Program SimilarityProceedings of the ACM on Programming Languages10.1145/36228307:OOPSLA2(912-940)Online publication date: 16-Oct-2023
  • (2023)A study of dynamic populations in geometric semantic genetic programmingInformation Sciences: an International Journal10.1016/j.ins.2023.119513648:COnline publication date: 1-Nov-2023
  • (2023)Jaws 30Genetic Programming and Evolvable Machines10.1007/s10710-023-09467-x24:2Online publication date: 22-Nov-2023
  • (2023)Automatically Choosing Selection Operator Based on Semantic Information in Evolutionary Feature ConstructionPRICAI 2023: Trends in Artificial Intelligence10.1007/978-981-99-7022-3_36(385-397)Online publication date: 15-Nov-2023
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media