Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-642-30191-9_24guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Novel multi-sample scheme for inferring phylogenetic markers from whole genome tumor profiles

Published: 21 May 2012 Publication History

Abstract

Computational cancer phylogenetics seeks to enumerate the temporal sequence of aberrations in tumor evolution, thereby delineating the evolution of possible tumor progression pathways, molecular subtypes and mechanisms of action. We previously developed a pipeline for constructing phylogenies describing evolution between major recurring cell types computationally inferred from whole-genome tumor profiles. The accuracy and detail of the phylogenies, however, depends on the identification of accurate, high-resolution molecular markers of progression, i.e., reproducible regions of aberration that robustly differentiate different subtypes and stages of progression. Here we present a novel hidden Markov model (HMM) scheme for the problem of inferring such phylogenetically significant markers through joint segmentation and calling of multi-sample tumor data. Our method classifies sets of genome-wide DNA copy number measurements into a partitioning of samples into normal (diploid) or amplified at each probe. It differs from other similar HMM methods in its design specifically for the needs of tumor phylogenetics, by seeking to identify robust markers of progression conserved across a set of copy number profiles. We show an analysis of our method in comparison to other methods on both synthetic and real tumor data, which confirms its effectiveness for tumor phylogeny inference and suggests avenues for future advances.

References

[1]
Al-Kuraya, K., Schraml, P., Torhorst, J., et al.: Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Research 64(23), 8534-8540 (2004)
[2]
Ashworth, A., de Bono, J. S.: Translating cancer research into targeted therapeutics. Nature (2010)
[3]
Bamford, S., Dawson, E., Forbes, S., et al.: The COSMIC (catalogue of somatic mutations in cancer) database and website. Br. J. Cancer (2004)
[4]
Beroukhim, R., Getz, G., Nghiemphu, L., et al.: Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma. Proceedings of the National Academy of Sciences 104(50), 20007-20012 (2007)
[5]
Eilers, P. H.C., de Menezes, R.: Quantile smoothing of array CGH data. Bioinformatics 21(7), 1146-1153 (2005)
[6]
Felsenstein, J.: PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5, 164-166 (1989)
[7]
Futreal, P. A., Coin, L., Marshall, M., et al.: A census of human cancer genes. Nat. Rev. Cancer 4(3), 177-183 (2004)
[8]
Golub, T. R., Slonim, D. K., Tamayo, P., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-537 (1999)
[9]
Horlings, H. M., Bergamaschi, A., Nordgard, S. H., et al.: ESR1 gene amplification in breast cancer: a common phenomenon? Nat. Genet. (2008)
[10]
Hsu, L., Self, S. G., Grove, D., et al.: Denoising array-based comparative genomic hybridization data using wavelets. Biostatistics 6(2), 211-226 (2005)
[11]
Kuhner, M. K., Felsenstein, J.: A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Molecular Biology and Evolution 11(3), 459-468 (1994)
[12]
Miller, L. D., Smeds, J., George, J., et al.: An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proceedings of the National Academy of Sciences of the United States of America 102(38), 13550-13555 (2005)
[13]
Mittendorf, E. A., Liu, Y., Tucker, S. L., et al.: A novel interaction between HER2/neu and cyclin E in breast cancer. Oncogene 29, 3896-3907 (2010)
[14]
Moelans, C. B., de Weger, R. A., Monsuur, H. N., et al.: Molecular profiling of invasive breast cancer by multiplex ligation-dependent probe amplification-based copy number analysis of tumor suppressor and oncogenes. Mod. Pathol. (2010)
[15]
Navin, N., Krasnitz, A., Rodgers, L., et al.: Inferring tumor progression from genomic heterogeneity. Genome Research 20, 68-80 (2010)
[16]
Nowak, G., Hastie, T., Pollack, J. R., Tibshirani, R.: A fused lasso latent feature model for analyzing multi-sample aCGH data. Biostatistics 12(4), 776-791 (2011)
[17]
Olshen, A. B., Venkatraman, E. S., Lucito, R., Wigler, M.: Circular binary segmentation for the analysis of array based DNA copy number data. Biostatistics 5(4), 557-572 (2004)
[18]
Perou, C. M., Sorlie, T., Eisen, M. B., et al.: Molecular portraits of human breast tumors. Nature 406, 747-752 (2000)
[19]
Picard, F., Lebarbier, E., Hoebeke, M., Rigaill, G., Thiam, B., Robin, S.: Joint segmentation, calling, and normalization of multiple CGH profiles. Biostatistics 12(3), 413-428 (2011)
[20]
Picard, F., Robin, S., Lavielle, M., et al.: A statistical approach for array CGH data analysis. BMC Bioinformatics 6 (2005)
[21]
Pique-Regi, R., Ortega, A., Asgharzadeh, S.: Joint estimation of copy number variation and reference intensities on multiple DNA arrays using GADA. Bioinformatics 25(10), 1223-1230 (2009)
[22]
Scaltriti, M., Eichhorn, P. J., Cortes, J., et al.: Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proceedings of the National Academy of Sciences (2011)
[23]
Schwartz, R., Shackney, S.: Applying unmixing to gene expression data for tumor phylogeny inference. BMC Bioinformatics 11, 42 (2010)
[24]
Shah, S. P., Cheung, K. J., Johnson, N. A., et al.: Model-based clustering of array cgh data. Bioinformatics 25(12), i30-i38 (2009)
[25]
Sorlie, T., Perrou, C. M., Tibshirani, R., et al.: Gene expression profiles of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869-10864 (2001)
[26]
Sotiriou, C., Neo, S.Y., McShane, L. M., et al.: Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl. Acad. Sci. USA 100, 10393-10398 (2003)
[27]
Subramanian, A., Shackney, S., Schwartz, R.: Inference of tumor phylogenies from genomic assays on heterogeneous samples. In: Proc. ACM-BCB 2011 (2011)
[28]
Swafford, D.: PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4 (2002)
[29]
Tolliver, D., Tsourakakis, C., Subramanian, A., et al.: Robust unmixing of tumor states in array comparative genomic hybridization data. Bioinformatics 26(12), i106-i114 (2010)
[30]
van't Veer, L. J., Dai, H., van de Vivjer, M., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-536 (2002)
[31]
Wang, K., Li, M., Hadley, D., et al.: Penncnv: An integrated hidden markov model designed for high-resolution copy number variation detection in whole-genome snp genotyping data. Genome Research 17(11), 1665-1674 (2007)
[32]
Wiel, V. D., Mark, A., Brosens, R., et al.: Smoothing waves in array CGH tumor profiles. Bioinformatics 25(9), 1099-1104 (2009)
[33]
Wu, L.Y., Chipman, H. A., Bull, S. B., Briollais, L., Wang, K.: A Bayesian segmentation approach to ascertain copy number variations at the population level. Bioinformatics 25(13), 1669-1679 (2009)
[34]
Zhang, N. R., Senbabaoglu, Y., Li, J. Z.: Joint estimation of DNA copy number from multiple platforms. Bioinformatics 26(2), 153-160 (2010)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
ISBRA'12: Proceedings of the 8th international conference on Bioinformatics Research and Applications
May 2012
330 pages
ISBN:9783642301902
  • Editors:
  • Leonidas Bleris,
  • Ion Măndoiu,
  • Russell Schwartz,
  • Jianxin Wang

Sponsors

  • NSF: National Science Foundation
  • Georgia State University
  • UTD School of Engineering and Computer Science: UTD School of Engineering and Computer Science

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 21 May 2012

Author Tags

  1. array comparative genomic hybridization (aCGH)
  2. bioinformatics
  3. cancer
  4. multi-sample
  5. phylogenetics

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Nov 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media