Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-642-12297-2_63guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Beyond pairwise shape similarity analysis

Published: 23 September 2009 Publication History

Abstract

This paper considers two major applications of shape matching algorithms: (a) query-by-example, i e retrieving the most similar shapes from a database and (b) finding clusters of shapes, each represented by a single prototype Our approach goes beyond pairwise shape similarity analysis by considering the underlying structure of the shape manifold, which is estimated from the shape similarity scores between all the shapes within a database We propose a modified mutual kNN graph as the underlying representation and demonstrate its performance for the task of shape retrieval We further describe an efficient, unsupervised clustering method which uses the modified mutual kNN graph for initialization Experimental evaluation proves the applicability of our method, e g by achieving the highest ever reported retrieval score of 93.40% on the well known MPEG-7 database.

References

[1]
Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments IEEE Trans on Pattern Analysis and Machine Intelligence 30(7), 1270-1281 (2008)
[2]
Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detection In: Leonardis, A., Bischof, H., Pinz, A (eds.) ECCV 2006 LNCS, vol 3952, pp 575-588 Springer, Heidelberg (2006)
[3]
Ferrari, V., Tuytelaars, T., Gool, L.V.: Object detection by contour segment networks In: Leonardis, A., Bischof, H., Pinz, A (eds.) ECCV 2006 LNCS, vol 3953, pp 14-28 Springer, Heidelberg (2006)
[4]
Biederman, I., Ju, G.: Surface vs edge-based determinants of visual recognition Cognitive Psychology 20, 38-64 (1988)
[5]
Gavrila, D.M.: A Bayesian, exemplar-based approach to hierarchical shape matching IEEE Trans on Pattern Analysis and Machine Intelligence 29, 1408-1421 (2007)
[6]
Weinland, D., Boyer, E.: Action recognition using exemplar-based embedding In: Proc IEEE Conf on Computer Vision and Pattern Recognition (CVPR), pp 1-7 (2008)
[7]
Yang, X., Bai, X., Latecki, L.J., Tu, Z.: Improving shape retrieval by learning graph transduction In: Forsyth, D., Torr, P., Zisserman, A (eds.) ECCV 2008, Part IV LNCS, vol 5305, pp 788-801 Springer, Heidelberg (2008)
[8]
Yang, X., Koknar-Tezel, S., Latecki, L.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval In: Proc IEEE Conf on Computer Vision and Pattern Recognition, CVPR (2009)
[9]
Ling, H., Jacobs, D.: Shape classification using the inner-distance IEEE Trans on Pattern Analysis and Machine Intelligence 29(2), 286-299 (2007)
[10]
Schmidt, F.R., Farin, D., Cremers, D.: Fast matching of planar shapes in sub-cubic runtime In: Proc IEEE Intern Conf on Computer Vision, ICCV (2007)
[11]
Yankov, D., Keogh, E.: Manifold clustering of shapes In: Proc Intern Conf on Data Mining (ICDM), pp 1167-1171 (2006)
[12]
McNeill, G., Vijayakumar, S.: Hierarchical procrustes matching for shape retrieval In: Proc IEEE Conf on Computer Vision and Pattern Recognition (CVPR), vol 1, pp 885-894 (2006)
[13]
Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes In: Proc IEEE Conf on Computer Vision and Pattern Recognition, CVPR (2007)
[14]
Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering In: Advances in Neural Information Processing Systems (NIPS), pp 1601-1608 MIT Press, Cambridge (2004)
[15]
Frey, B.J., Dueck, D.: Clustering by passing messages between data points Science 315, 972-976 (2007)
[16]
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation Intern Journal of Computer Vision 59(2), 167-181 (2004)
[17]
Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock graphs IEEE Trans on Pattern Analysis and Machine Intelligence 26(5), 550-571 (2004)
[18]
Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and robust retrieval by shape content through curvature scale space In: Proc of International Workshop on Image Databases and Multimedia Search, pp 35-42 (1996)
[19]
Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions The Journal of Machine Learning Research 3, 583-617 (2003)

Cited By

View all
  • (2018)Unsupervised Similarity Learning through Rank Correlation and kNN SetsACM Transactions on Multimedia Computing, Communications, and Applications10.1145/324105314:4(1-23)Online publication date: 23-Oct-2018
  • (2017)Regularized diffusion process for visual retrievalProceedings of the Thirty-First AAAI Conference on Artificial Intelligence10.5555/3298023.3298145(3967-3973)Online publication date: 4-Feb-2017
  • (2017)Selection and Combination of Unsupervised Learning Methods for Image RetrievalProceedings of the 15th International Workshop on Content-Based Multimedia Indexing10.1145/3095713.3095741(1-6)Online publication date: 19-Jun-2017
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
ACCV'09: Proceedings of the 9th Asian conference on Computer Vision - Volume Part III
September 2009
678 pages
ISBN:3642122965
  • Editors:
  • Hongbin Zha,
  • Rin-ichiro Taniguchi,
  • Stephen Maybank

Sponsors

  • NSF of China: National Natural Science Foundation of China
  • Fujitsu
  • Microsoft Research: Microsoft Research
  • Key Laboratory of Machine Perception (MOE), Peking University: Key Laboratory of Machine Perception (MOE), Peking University
  • National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 23 September 2009

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2018)Unsupervised Similarity Learning through Rank Correlation and kNN SetsACM Transactions on Multimedia Computing, Communications, and Applications10.1145/324105314:4(1-23)Online publication date: 23-Oct-2018
  • (2017)Regularized diffusion process for visual retrievalProceedings of the Thirty-First AAAI Conference on Artificial Intelligence10.5555/3298023.3298145(3967-3973)Online publication date: 4-Feb-2017
  • (2017)Selection and Combination of Unsupervised Learning Methods for Image RetrievalProceedings of the 15th International Workshop on Content-Based Multimedia Indexing10.1145/3095713.3095741(1-6)Online publication date: 19-Jun-2017
  • (2017)Accurate and efficient shape matching approach using vocabularies of multi-feature space representationsJournal of Real-Time Image Processing10.1007/s11554-015-0545-z13:3(449-465)Online publication date: 1-Sep-2017
  • (2017)Shape automatic clustering-based multi-objective optimization with decompositionMachine Vision and Applications10.1007/s00138-017-0850-628:5-6(497-508)Online publication date: 1-Aug-2017
  • (2017)Improving Shape Retrieval by Fusing Generalized Mean First-Passage TimeNeural Information Processing10.1007/978-3-319-70093-9_46(439-448)Online publication date: 14-Nov-2017
  • (2016)Rank Diffusion for Context-Based Image RetrievalProceedings of the 2016 ACM on International Conference on Multimedia Retrieval10.1145/2911996.2912060(321-325)Online publication date: 6-Jun-2016
  • (2016)Object matching with hierarchical skeletonsPattern Recognition10.1016/j.patcog.2016.01.02255:C(183-197)Online publication date: 1-Jul-2016
  • (2016)A correlation graph approach for unsupervised manifold learning in image retrieval tasksNeurocomputing10.1016/j.neucom.2016.03.081208:C(66-79)Online publication date: 5-Oct-2016
  • (2016)Combining re-ranking and rank aggregation methods for image retrievalMultimedia Tools and Applications10.1007/s11042-015-3044-075:15(9121-9144)Online publication date: 1-Aug-2016
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media