Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-642-11266-9_27guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Perfect Matching for Biconnected Cubic Graphs in O(n log2n) Time

Published: 08 December 2009 Publication History

Abstract

The main result of this paper is a new perfect matching algorithm for biconnected cubic graphs. The algorithm runs in time O ( n log2 n ). It is also possible, by applying randomized data structures, to get O ( n log n loglog3 n ) average time. Our solution improves the one given by T. Biedl et al. [3]. The algorithm of Biedl et al. runs in time O ( n log4 n ). We use a similar approach. However, thanks to exploring some properties of biconnected cubic graphs we are able to replace complex fully-dynamic biconnectivity data structure with much simpler, dynamic graph connectivity and dynamic tree data structures. Moreover, we present a significant modification of the new algorithm which makes application of a decremental dynamic graph connectivity data structure possible, instead of one supporting the fully dynamic graph connectivity. It gives hope for further improvements.

References

[1]
Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a Maximum Cardinality Matching in a Bipartite Graph in Time O ( n 1.5 ¿ m /log n ). Information Processing Letters 37, 237-240 (1991)
[2]
Biedl, T.C.: Linear Reductions of Maximum Matching. In: SODA 2001, pp. 825- 826 (2001)
[3]
Biedl, T., Bose, P., Demaine, E., Lubiw, A.: Efficient Algorithms for Petersen's Matching Theorem. Journal of Algorithms 38, 110-134 (2001)
[4]
Frink, O.: A Proof of Petersen's Theorem. The Annals of Mathematics, Series 2 27(4), 491-493 (1926)
[5]
Henzinger, M., King, V.: Fully Dynamic 2-Edge Connectivity Algorithm in Polylogarithmic Time per Operation. Technical Note, Digital Equipment Corp., Systems Research Ctr. (June 12, 1997)
[6]
Holm, J., De Lichtenserg, K., Thorup, M.: Poly-Logarithmic Deterministic Fully-Dynamic Algorithms for Connectivity, Minimum Spanning Tree, 2-Edge and Biconnectivity. Journal of the ACM (JACM) 48, 723-760 (2001)
[7]
Lovasz, L., Plummer, M. D.: Matching Theory. North-Holland Publishing Co., Amsterdam (1986)
[8]
Micali, S., Vazirani, V. V.: An O (¿ nm ) Algorithm for Finding Maximum Matching in General Graphs. In: Proceedings of FOCS 1980, pp. 17-27. IEEE, Los Alamitos (1980)
[9]
Petersen, J.: Die Theorie der regulären Graphs. Acta Mathematica 15, 193-220 (1891)
[10]
Karpinski, M., Rytter, W.: Fast Parallel Algorithms for Graph Matching Problem. Oxford University Press, Oxford (1998)
[11]
Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Parts II and III. Springer, Berlin (2003)
[12]
Schrijver, A.: Bipartite Edge Coloring in O (¿m) Time. SIAM Journal on Computing 28(3), 841-846 (1999)
[13]
Sleator, D. D., Tarjan, R. E.: A Data Structure for Dynamic Trees. In: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 114-122 (1981)
[14]
Tarjan, R. E.: Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1983)
[15]
Thorup, M.: Near-Optimal Fully-Dynamic Graph Connectivity. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 343-350 (2000)
[16]
Thorup, M.: Decremental Dynamic Connectivity. In: Proceedings of the 8th ACM Symposium on Discrete Algorithms (SODA), pp. 305-313 (1997)
[17]
Mucha, M.: Finding Maximum Matchings via Gaussian Elimination. PhD Thesis, Warsaw University, Faculty of Mathematics, Informatics and Mechanics
[18]
Harvey, N. J. A.: Algebraic Algorithms for Matching and Matroid Problems. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
[19]
Greenlaw, R., Petreschi, R.: Cubic Graphs. ACM Computing Surveys (CSUR) 27(4), 471-495 (1995)

Cited By

View all
  1. Perfect Matching for Biconnected Cubic Graphs in O(n log2n) Time

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      SOFSEM '10: Proceedings of the 36th Conference on Current Trends in Theory and Practice of Computer Science
      December 2009
      778 pages
      ISBN:9783642112652
      • Editors:
      • Jan Leeuwen,
      • Anca Muscholl,
      • David Peleg,
      • Jaroslav Pokorný,
      • Bernhard Rumpe

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 08 December 2009

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 19 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Approximate Cycle Double CoverCombinatorial Algorithms10.1007/978-3-031-63021-7_32(421-432)Online publication date: 1-Jul-2024
      • (2019)Representing Graphs and Hypergraphs by Touching Polygons in 3DGraph Drawing and Network Visualization10.1007/978-3-030-35802-0_2(18-32)Online publication date: 17-Sep-2019
      • (2018)Dynamic bridge-finding in õ(log2 n) amortized timeProceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3174304.3175269(35-52)Online publication date: 7-Jan-2018
      • (2016)The cost of perfection for matchings in graphsDiscrete Applied Mathematics10.1016/j.dam.2014.12.006210:C(112-122)Online publication date: 10-Sep-2016
      • (2011)Linear algorithm for selecting an almost regular spanning subgraph in an almost regular graphProblems of Information Transmission10.1134/S003294601103005747:3(269-273)Online publication date: 1-Sep-2011

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media