Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-642-02903-5_2guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Spatially-Localized Compressed Sensing and Routing in Multi-hop Sensor Networks

Published: 07 July 2009 Publication History

Abstract

We propose energy-efficient compressed sensing for wireless sensor networks using spatially-localized sparse projections. To keep the transmission cost for each measurement low, we obtain measurements from clusters of adjacent sensors. With localized projection, we show that joint reconstruction provides significantly better reconstruction than independent reconstruction. We also propose a metric of energy overlap between clusters and basis functions that allows us to characterize the gains of joint reconstruction for different basis functions. Compared with state of the art compressed sensing techniques for sensor network, our simulation results demonstrate significant gains in reconstruction accuracy and transmission cost.

References

[1]
Cristescu, R., Beferull-Lozano, B., Vetterli, M.: On network correlated data gathering. In: INFOCOM (March 2004).
[2]
Pattem, S., Krishnamachari, B., Govindan, R.: The impact of spatial correlation on routing with compression in wireless sensor networks. In: IPSN (April 2004).
[3]
von Rickenbach, P., Wattenhofer, R.: Gathering correlated data in sensor networks. In: DIALM-POMC. ACM, New York (2004).
[4]
Ciancio, A., Pattem, S., Ortega, A., Krishnamachari, B.: Energy-efficient data representation and routing for wireless sensor networks based on a distributed wavelet compression algorithm. In: IPSN (April 2006).
[5]
Shen, G., Ortega, A.: Joint routing and 2d transform optimization for irregular sensor network grids using wavelet lifting. In: IPSN (April 2008).
[6]
Pattem, S., Shen, G., Chen, Y., Krishnamachari, B., Ortega, A.: Senzip: An architecture for distributed en-route compression in wireless sensor networks. In: ESSA (April 2009).
[7]
Wagner, R., Choi, H., Baraniuk, R., Delouille, V.: Distributed wavelet transform for irregular sensor network grids. In: SSP (July 2005).
[8]
Gastpar, M., Dragotti, P., Vetterli, M.: The distributed karhunen-loeve transform. In: MMSP (December 2002).
[9]
Donoho, D.L.: Compressed sensing. IEEE Transactions on Information Theory (April 2006).
[10]
Candes, E., Romberg, J., Tao, T.: Robust uncertainity principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory (February 2006).
[11]
Candes, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Problems (June 2007).
[12]
Lee, S., Pattem, S., Sathiamoorthy, M., Krishnamachari, B., Ortega, A.: Compressed sensing and routing in sensor networks. USC CENG Technical Report (April 2009).
[13]
Quer, G., Masierto, R., Munaretto, D., Rossi, M., Widmer, J., Zorzi, M.: On the interplay between routing and signal representation for compressive sensing in wireless sensor network. In: ITA (February 2009).
[14]
Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: The application of compressed sensing for rapid MR imaging. In: MRM (December 2007).
[15]
Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single pixel imaging via compressive sampling. IEEE Signal Processing Magazine (March 2008).
[16]
Wang, W., Garofalakis, M., Ramchandran, K.: Distributed sparse random projections for refinable approximation. In: IPSN (April 2007).
[17]
Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Dissemination of compressed historical information in sensor networks. VLDB Journal (2007).
[18]
Gan, L., Do, T.T., Tran, T.D.: Fast compressive imaging using scrambled block hadamard ensemble (preprint, 2008).
[19]
Do, T., Tran, T., Gan, L.: Fast compressive sampling with structurally random matrices. In: ICASSP (April 2008).
[20]
Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing (2007).
[21]
Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction (January 2009), http://www.lx.it.pt/~mtf/GPSR/

Cited By

View all
  • (2020)Efficient Data Collection Method in Sensor NetworksComplexity10.1155/2020/64678912020Online publication date: 1-Jan-2020
  • (2019)Clustering and Compressive Data Gathering in Wireless Sensor NetworkWireless Personal Communications: An International Journal10.1007/s11277-019-06614-5109:2(1311-1331)Online publication date: 1-Nov-2019
  • (2018)Compressed Sensing Based Joint Rate Allocation and Routing Design in Wireless Sensor NetworksWireless Communications & Mobile Computing10.1155/2018/62614532018(22)Online publication date: 1-Mar-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
GSN '09: Proceedings of the 3rd International Conference on GeoSensor Networks
July 2009
179 pages
ISBN:9783642029028
  • Editors:
  • Niki Trigoni,
  • Andrew Markham,
  • Sarfraz Nawaz

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 07 July 2009

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Efficient Data Collection Method in Sensor NetworksComplexity10.1155/2020/64678912020Online publication date: 1-Jan-2020
  • (2019)Clustering and Compressive Data Gathering in Wireless Sensor NetworkWireless Personal Communications: An International Journal10.1007/s11277-019-06614-5109:2(1311-1331)Online publication date: 1-Nov-2019
  • (2018)Compressed Sensing Based Joint Rate Allocation and Routing Design in Wireless Sensor NetworksWireless Communications & Mobile Computing10.1155/2018/62614532018(22)Online publication date: 1-Mar-2018
  • (2016)Energy-efficient compressed data aggregation in underwater acoustic sensor networksWireless Networks10.1007/s11276-015-1076-z22:6(1985-1997)Online publication date: 1-Aug-2016
  • (2015)Swarm Intelligent Compressive Routing in Wireless Sensor NetworksComputational Intelligence10.1111/coin.1203831:3(513-531)Online publication date: 1-Aug-2015
  • (2013)Compression in wireless sensor networksACM Transactions on Sensor Networks10.1145/252894810:1(1-44)Online publication date: 6-Dec-2013
  • (2012)Practical data compression in wireless sensor networksJournal of Network and Computer Applications10.1016/j.jnca.2011.03.00135:1(37-59)Online publication date: 1-Jan-2012
  • (2010)Efficient measurement generation and pervasive sparsity for compressive data gatheringIEEE Transactions on Wireless Communications10.1109/TWC.2010.092810.1000639:12(3728-3738)Online publication date: 1-Dec-2010

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media