Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-642-01721-6_4guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Using Context Annotated Mobility Profiles to Recruit Data Collectors in Participatory Sensing

Published: 07 May 2009 Publication History

Abstract

Mobile phones and accompanying network layers provide a platform to capture and share location, image, and acoustic data. This substrate enables participatory sensing: coordinated data gathering by individuals and communities to explore the world around them. Realizing such widespread and participatory sensing poses difficult challenges. In this paper, we discuss one particular challenge: creating a recruitment service to enable sensing organizers to select well-suited participants. Our approach concentrates on finding participants based on geographic and temporal coverage, as determined by context-annotated mobility profiles that model transportation mode, location, and time. We outline a three-stage recruitment framework designed to be parsimonious so as to limit risk to participants by reducing the location and context information revealed to the system. Finally, we illustrate the utility of the framework, along with corresponding modeling technique for mobility information, by analyzing data from a pilot mobility study consisting of ten users.

References

[1]
Consolvo, S., McDonald, D., Toscos, T., Chen, M., et al.: Activity sensing in the wild: a field trial of ubifit garden. In: Computer Human Interaction (2008)
[2]
MycaNutrition: MyFoodPhone Nutrition (2008), http://mycanutrition.com
[3]
CENS: Personal Environmental Impact Report (2008), http://peir.cens.ucla.edu
[4]
Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.: Participatory Sensing. In: World-Sensor-Web, Sensys (2006)
[5]
Eisenman, S., Lane, N., Miluzzo, E., Peterson, R., Ahn, G., Campbell, A.: MetroSense Project: People-Centric Sensing at Scale. In: World-Sensor-Web, Sensys
[6]
Campbell, A., Eisenman, S., Lane, N., Miluzzo, E., et al.: The Rise of People-Centric Sensing. IEEE Internet Computing 12(4), 12-21 (2008)
[7]
Parker, A., Reddy, S., Schmid, T., et al.: Network System Challenges in Selective Sharing and Verification for Personal, Social, and Urban-Scale Sensing Applications. Hotmobile (2006)
[8]
UCLA Insitute of the Environment: Sustainability (2008), http://sustain.ucla.edu/
[9]
GreenMap: Green map - think global, map local (2008), http://greenmap.org/
[10]
Shilton, K., Ramanathan, N., Reddy, S., Samanta, V., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Participatory Design of Sensing Networks: Strengths and Challenges. In: Participatory Design Conference (2008)
[11]
LiveablePlaces: Liveable Places, Making the Connections Community Workshop (2008), http://liveableplaces.org
[12]
Brabham, D.: Crowdsourcing as a Model for Problem Solving: An Introduction and Cases. Convergence 14(1), 75 (2008)
[13]
Amazon: Amazon mechanical turk (2008), http://mturk.com
[14]
GURU.com: Freelancers at online service marketplace (2008), http://guru.com
[15]
Reddy, S., Shilton, K., Burke, J., et al.: Evaluating Participation and Performance in Participatory Sensing. In: UrbanSense, Sensys (2008)
[16]
Ganesan, D., Cristescu, R., Beferull-Lozano, B.: Power-efficient sensor placement and transmission structure for data gathering under distortion constraints. ACM Transactions on Sensor Networks (TOSN) 2(2), 155-181 (2006)
[17]
Kansal, A., Kaiser, W., Pottie, G., Srivastava, M., Sukhatme, G.: Reconfiguration methods for mobile sensor networks. Transactions on Sensor Networks (2007)
[18]
Gonz, M., et al.: Understanding individual human mobility patterns. Nature 453(7196), 779 (2008)
[19]
Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal and Ubiquitous Computing 10(4), 255-268 (2006)
[20]
Miluzzo, E., Lane, N., Campbell, A.: Virtual Sensing Range (Poster Abstract). In: Proc. of ACM 4th Intl. Conf. on Embedded Networked Sensor Systems, pp. 1-3 (2006)
[21]
Eisenman, S., Lane, N., Campbell, A.: Techniques for Improving Opportunistic Sensor Networking Performance. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 157-175. Springer, Heidelberg (2008)
[22]
Lu, H., Lane, N., Eisenman, S., Campbell, A.: Bubble-Sensing: A New Paradigm for Binding a Sensing Task to the Physical World using Mobile Phones. In: Workshop on Mobile Devices and Urban Sensing, IPSN (2008)
[23]
Gaonkar, S., Li, J., Choudhury, R., Cox, L.: Micro-Blog: sharing and querying content through mobile phones and social participation. In: Mobisys (2008)
[24]
Krause, A., Horvitz, E., Kansal, A., Zhao, F.: Toward Community Sensing. In: ACM Conference on Information Processing in Sensor Networks (IPSN) (2008)
[25]
Hightower, J., Borriello, G.: A survey and taxonomy of location systems for ubiquitous computing. IEEE Computer 34(8), 57-66 (2001)
[26]
Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw gps data for geographic applications on the web. In: WWW Conference (2008)
[27]
Anthony, D., Henderson, T., Kotz, D.: Privacy in Location-Aware Computing Environments. Pervasive Computing, IEEE 6(4), 64-72 (2007)
[28]
He, Q., Wu, D., Khosla, P.: The Quest for Personal Control over Mobile Location Privacy. IEEE Communications Magazine (2004)
[29]
Shahabi, C., Khoshgozaran, A.: Location Privacy in Geospatial Decision-Making. In: Bhalla, S. (ed.) DNIS 2007. LNCS, vol. 4777, pp. 1-15. Springer, Heidelberg (2007)
[30]
Mun, M., Estrin, D., Burke, J., Hansen, M.: Parsimonious Mobility Classification using GSM and WiFi Traces. In: IEEE EmNets (2008)
[31]
Shilton, K., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Participatory Privacy in Urban Sensing. In:Workshop on Mobile Device and Urban Sensing, IPSN (2008)
[32]
Waldo, J., Lin, H., Millett, L.: Engaging Privacy and Information Technology in a Digital Age. National Academies Press, Washington (2007)
[33]
Yahoo: FireEagle - Take Location Data to the Web (2008), http://fireeagle.com
[34]
MapMyRide: Map Cycling and Biking Routes (2008), http://mapmyride.com
[35]
Google: Google Maps API (2008), http://maps.google.com
[36]
Kang, J., Welbourne, W., Stewart, B., Borriello, G.: Extracting places from traces of locations. Mobile Computing and Communications Review 9(3), 58-68 (2005)
[37]
Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering personal gazetteers: an interactive clustering approach. In: ACM GIS, pp. 266-273. ACM, New York (2004)
[38]
Froehlich, J., Krumm, J.: Route Prediction from Trip Observations. Society of Automative Engineers 2193, 53 (2008)
[39]
Reddy, S., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Determining Transportation Modes on Mobile Phones. In: ISWC (2008)
[40]
Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Information Processing Letters 70(1), 39-45 (1999)
[41]
Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Van Briesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: ACM Knowledge discovery and data mining, pp. 420-429. ACM Press, New York (2007)
[42]
Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maximizing submodular set functions I. Mathematical Programming 14(1), 265-294 (1978)
[43]
Hsu, W., Dutta, D., Helmy, A.: Mining Behavioral Groups in Large Wireless LANs. In: ACM Mobicom (2007)
[44]
Osborne, J.: Notes on the use of data transformations. Practical Assessment, Research & Evaluation 8(6) (2002)
[45]
Shlens, J.: A tutorial on principal component analysis. Systems Neurobiology Laboratory, University of California at San Diego (December 2005)
[46]
Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. American Society for Info. Science 41(6), 391-407 (1990)
[47]
Gong, Y., Liu, X.: Video summarization using singular value decomposition. In: CVPR, vol. 2. IEEE Computer Society, Los Alamitos; 1999 (2000)
[48]
Cohen, J.: Privacy, Visibility, Transparency, and Exposure. University of Chicago Law Review 75(1) (2008)
[49]
Nissenbaum, H.: Privacy as Contextual Integrity. Wash. Law Review 79(1) (2004)
[50]
Zimmer, M.: Privacy and Surveillance in Web 2.0: A study in Contextual Integrity and the Emergence of Netaveillance. Society for Social studies of Science (2007)

Cited By

View all
  • (2023)Dynamic Task Assignment Framework for Mobile Crowdsensing with Deep Reinforcement LearningWireless Communications & Mobile Computing10.1155/2023/70937922023Online publication date: 1-Jan-2023
  • (2020)Social-Aware Task Allocation in Mobile Crowd SensingWireless Communications & Mobile Computing10.1155/2020/88222512020Online publication date: 1-Jan-2020
  • (2018)Multitask Allocation to Heterogeneous Participants in Mobile Crowd SensingWireless Communications & Mobile Computing10.1155/2018/72180612018Online publication date: 1-Jan-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
LoCA '09: Proceedings of the 4th International Symposium on Location and Context Awareness
May 2009
282 pages
ISBN:9783642017209
  • Editors:
  • Tanzeem Choudhury,
  • Aaron Quigley,
  • Thomas Strang,
  • Koji Suginuma

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 07 May 2009

Author Tags

  1. Location Based Services
  2. Mobility Modeling
  3. Participatory Sensing

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Dynamic Task Assignment Framework for Mobile Crowdsensing with Deep Reinforcement LearningWireless Communications & Mobile Computing10.1155/2023/70937922023Online publication date: 1-Jan-2023
  • (2020)Social-Aware Task Allocation in Mobile Crowd SensingWireless Communications & Mobile Computing10.1155/2020/88222512020Online publication date: 1-Jan-2020
  • (2018)Multitask Allocation to Heterogeneous Participants in Mobile Crowd SensingWireless Communications & Mobile Computing10.1155/2018/72180612018Online publication date: 1-Jan-2018
  • (2018)Participant selection for t-sweep k-coverage crowd sensing tasksWorld Wide Web10.1007/s11280-017-0481-x21:3(741-758)Online publication date: 1-May-2018
  • (2017)PSAllocatorProceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing10.1145/2998181.2998193(1139-1151)Online publication date: 25-Feb-2017
  • (2017)Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social ComputingundefinedOnline publication date: 25-Feb-2017
  • (2016)A Context-Driven Worker Selection Framework for Crowd-SensingInternational Journal of Distributed Sensor Networks10.1155/2016/69587102016(12)Online publication date: 1-Mar-2016
  • (2016)Lowering the technical threshold for organizers to create and deliver Mobile Crowd Sensing ApplicationsInternational Journal of Distributed Sensor Networks10.1155/2015/7216472015(10-10)Online publication date: 1-Jan-2016
  • (2016)iCrowd: Near-Optimal Task Allocation for Piggyback CrowdsensingIEEE Transactions on Mobile Computing10.1109/TMC.2015.248350515:8(2010-2022)Online publication date: 1-Aug-2016
  • (2014)CrowdRecruiterProceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing10.1145/2632048.2632059(703-714)Online publication date: 13-Sep-2014
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media