Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-642-40176-3_9guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Enhancing declare maps based on event correlations

Published: 26 August 2013 Publication History

Abstract

Traditionally, most process mining techniques aim at discovering procedural process models (e.g., Petri nets, BPMN, and EPCs) from event data. However, the variability present in less-structured flexible processes complicates the discovery of such procedural models. The "open world" assumption used by declarative models makes it easier to handle this variability. However, initial attempts to automatically discover declarative process models result in cluttered diagrams showing misleading constraints. Moreover, additional data attributes in event logs are not used to discover meaningful causalities. In this paper, we use correlations to prune constraints and to disambiguate event associations. As a result, the discovered process maps only show the more meaningful constraints. Moreover, the data attributes used for correlation and disambiguation are also used to find discriminatory patterns, identify outliers, and analyze bottlenecks (e.g., when do people violate constraints or miss deadlines). The approach has been implemented in ProM and experiments demonstrate the improved quality of process maps and diagnostics.

References

[1]
XES Standard Definition (2009), www.xes-standard.org
[2]
3TU Data Center: BPI Challenge 2011 Event Log (2011). 4fb8-803b-0d1120ffcf54
[3]
van der Aalst, W. M. P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)
[4]
van der Aalst, W. M. P., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Between Flexibility and Support. Computer Science - R&D, 99-113 (2009)
[5]
Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: VLDB, pp. 487- 499 (1994)
[6]
Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-Oriented Architectures. In: Dwyer, M. B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 245-259. Springer, Heidelberg (2007)
[7]
Binder, M., Dorda, W., Duftschmid, G., Dunkl, R., Fröschl, K. A., Gall, W., Grossmann, W., Harmankaya, K., Hronsky, M., Rinderle-Ma, S., Rinner, C., Weber, S.: On Analyzing Process Compliance in Skin Cancer Treatment: An Experience Report from the Evidence-Based Medical Compliance Cluster (EBMC2). In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 398-413. Springer, Heidelberg (2012)
[8]
Bose, R. P. J.C., van der Aalst, W. M. P.: Analysis of Patient Treatment Procedures: The BPI Challenge Case Study. Technical Report BPM-11-18, BPMCenter.org (2011)
[9]
Burattin, A., Maggi, F. M., van der Aalst, W. M. P., Sperduti, A.: Techniques for a Posteriori Analysis of Declarative Processes. In: EDOC, pp. 41-50 (2012)
[10]
Ferreira, D. R., Gillblad, D.: Discovering Process Models from Unlabelled Event Logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H. A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143- 158. Springer, Heidelberg (2009)
[11]
IEEE Task Force on Process Mining: Process Mining Manifesto. In: Guessarian, I. (ed.) Algebraic Semantics. LNBIP, vol. 99, pp. 169-194. Springer, Berlin (1981)
[12]
Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. International Journal on Software Tools for Technology Transfer, 224-233 (2003)
[13]
de Leoni, M., Maggi, F. M., van der Aalst, W. M. P.: Aligning Event Logs and Declarative Process Models for Conformance Checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 82-97. Springer, Heidelberg (2012)
[14]
Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: KDD, pp. 80-86. The AAAI Press (1998)
[15]
Ly, L. T., Indiono, C., Mangler, J., Rinderle-Ma, S.: Data Transformation and Semantic Log Purging for Process Mining. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 238-253. Springer, Heidelberg (2012)
[16]
Ly, L. T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring Business Process Compliance Using Compliance Rule Graphs. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 82-99. Springer, Heidelberg (2011)
[17]
Maggi, F. M., Bose, R. P. J.C., van der Aalst, W. M. P.: Efficient Discovery of Understandable Declarative Models from Event Logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270-285. Springer, Heidelberg (2012)
[18]
Maggi, F. M., Bose, R. P. J.C., van der Aalst, W. M. P.: A Knowledge-Based Integrated Approach for Discovering and Repairing Declare Maps. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433-448. Springer, Heidelberg (2013)
[19]
Maggi, F. M., Mooij, A. J., van der Aalst, W. M. P.: User-Guided Discovery of Declarative Process Models. In: IEEE Symposium on Computational Intelligence and Data Mining, vol. 2725, pp. 192-199. IEEE Computer Society (2011)
[20]
Motahari-Nezhad, H. R., Saint-Paul, R., Casati, F., Benatallah, B.: Event Correlation for Process Discovery fron Web Service Interaction Logs. The VLDB Journal 20(3), 417-444 (2011)
[21]
Perez-Castillo, R., Weber, B., Guzmn, I. R., Piattini, M., Pinggera, J.: Assessing Event Correlation in Non-Process-Aware Information Systems. Software & Systems Modeling, 1-23 (2012)
[22]
Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H. A.: Imperative Versus Declarative Process Modeling Languages: An Empirical Investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383-394. Springer, Heidelberg (2012)
[23]
Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
[24]
Rozsnyai, S., Slominski, A., Lakshmanan, G. T.: Discovering Event Correlation Rules for Semi-structured Business Processes. In: DEBS, pp. 75-86 (2011)
[25]
Schulte, S., Schuller, D., Steinmetz, R., Abels, S.: Plug-and-Play Virtual Factories. IEEE Internet Computing 16(5), 78-82 (2012)

Cited By

View all
  • (2023)Data-Aware Declarative Process Mining with SATACM Transactions on Intelligent Systems and Technology10.1145/360010614:4(1-26)Online publication date: 10-Aug-2023
  • (2022)Multi-perspective Process Analysis: Mining the Association Between Control Flow and Data ObjectsAdvanced Information Systems Engineering10.1007/978-3-031-07472-1_5(72-89)Online publication date: 6-Jun-2022
  • (2020)Do Declarative Process Models Help to Reduce Cognitive Biases Related to Business Rules?Conceptual Modeling10.1007/978-3-030-62522-1_9(119-133)Online publication date: 3-Nov-2020
  • Show More Cited By

Index Terms

  1. Enhancing declare maps based on event correlations

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    BPM'13: Proceedings of the 11th international conference on Business Process Management
    August 2013
    354 pages
    ISBN:9783642401756
    • Editors:
    • Florian Daniel,
    • Jianmin Wang,
    • Barbara Weber

    Sponsors

    • IBMR: IBM Research
    • BIZAGI: Bizagi

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 26 August 2013

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Data-Aware Declarative Process Mining with SATACM Transactions on Intelligent Systems and Technology10.1145/360010614:4(1-26)Online publication date: 10-Aug-2023
    • (2022)Multi-perspective Process Analysis: Mining the Association Between Control Flow and Data ObjectsAdvanced Information Systems Engineering10.1007/978-3-031-07472-1_5(72-89)Online publication date: 6-Jun-2022
    • (2020)Do Declarative Process Models Help to Reduce Cognitive Biases Related to Business Rules?Conceptual Modeling10.1007/978-3-030-62522-1_9(119-133)Online publication date: 3-Nov-2020
    • (2019)Dynamic malware detection and phylogeny analysis using process miningInternational Journal of Information Security10.1007/s10207-018-0415-318:3(257-284)Online publication date: 1-Jun-2019
    • (2019)Object-Centric Process Mining: Dealing with Divergence and Convergence in Event DataSoftware Engineering and Formal Methods10.1007/978-3-030-30446-1_1(3-25)Online publication date: 18-Sep-2019
    • (2018)Mining team compositions for collaborative work in business processesSoftware and Systems Modeling (SoSyM)10.1007/s10270-016-0567-417:2(675-693)Online publication date: 1-May-2018
    • (2016)Do activity lifecycles affect the validity of a business rule in a business process?Information Systems10.1016/j.is.2016.06.00262:C(42-59)Online publication date: 1-Dec-2016
    • (2016)A framework for efficiently mining the organisational perspective of business processesDecision Support Systems10.1016/j.dss.2016.06.01289:C(87-97)Online publication date: 1-Sep-2016
    • (2016)Discovery of Multi-perspective Declarative Process ModelsService-Oriented Computing10.1007/978-3-319-46295-0_6(87-103)Online publication date: 10-Oct-2016
    • (2015)Mining processes with multi-instantiationProceedings of the 30th Annual ACM Symposium on Applied Computing10.1145/2695664.2699493(1231-1237)Online publication date: 13-Apr-2015

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media