Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-319-34171-2_4guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

The Next Whisky Bar

Published: 09 June 2016 Publication History

Abstract

We determine the complexity of an optimization problem related to information theory. Taking a conjunctive propositional formula over some finite set of Boolean relations as input, we seek a satisfying assignment of the formula having minimal Hamming distance to a given assignment that is not required to be a model NearestSolution, NSol. We obtain a complete classification with respect to the relations admitted in the formula. For two classes of constraint languages we present polynomial time algorithms; otherwise, we prove hardness or completeness concerning the classes APX, poly-APX, NPO, or equivalence to well-known hard optimization problems.

References

[1]
Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 542, 317---331 1997
[2]
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg 1999
[3]
Bailleux, O., Marquis, P.: Some computational aspects of Distance-SAT. J. Autom. Reasoning 374, 231---260 2006
[4]
Behrisch, M., Hermann, M., Mengel, S., Salzer, G.: Give me another one!. In: Elbassioni, K., Makino, K. eds. ISAAC 2015. LNCS, vol. 9472, pp. 664---676. Springer, Heidelberg 2015.
[5]
Behrisch, M., Hermann, M., Mengel, S., Salzer, G.: As close as it gets. In: Kaykobad, M., Petreschi, R. eds. WALCOM 2016. LNCS, vol. 9627, pp. 222---235. Springer, Heidelberg 2016.
[6]
Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: constraint satisfaction problems. SIGACT News, Complex. Theor. Column 43 351, 22---35 2004
[7]
Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Inf. Process. Lett. 962, 59---66 2005
[8]
Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia PA 2001
[9]
Hochbaum, D.S., Megiddo, N., Naor, J., Tamir, A.: Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality. Math. Program. 621---3, 69---83 1993
[10]
Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM J. Comput. 306, 1863---1920 2000
[11]
Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Symposium on Theory of Computing STOC 1978, San Diego, pp. 216---226 1978
[12]
Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, New York 1986
  1. The Next Whisky Bar

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    CSR 2016: Proceedings of the 11th International Computer Science Symposium on Computer Science --- Theory and Applications - Volume 9691
    June 2016
    424 pages
    ISBN:9783319341705

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 09 June 2016

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media