Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-319-23461-8_36guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Probabilistic programming in Anglican

Published: 07 September 2015 Publication History

Abstract

Anglican is a probabilistic programming system designed to interoperate with Clojure and other JVM languages. We describe the implementation of Anglican and illustrate how its design facilitates both explorative and industrial use of probabilistic programming.

References

[1]
Goodman, N.D., Stuhlmüller, A.: The Design and implementation of probabilistic programming languages (2015). http://dippl.org/ (electronic; retrieved March 11, 2015)
[2]
Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: Proc. of Uncertainty in Artificial Intelligence (2008)
[3]
Mansinghka, V.K., Selsam, D., Perov, Y.N.: Venture: a higher-order probabilistic programming platform with programmable inference (2014). CoRR abs/1404.0099
[4]
van de Meent, J.W., Yang, H., Mansinghka, V., Wood, F.: Particle gibbs with ancestor sampling for probabilistic programs. In: Artificial Intelligence and Statistics (2015). http://arxiv.org/abs/1501.06769
[5]
Minka, T., Winn, J., Guiver, J., Knowles, D.: Infer.NET 2.4. Microsoft Research Cambridge (2010)
[6]
Paige, B., Wood, F., Doucet, A., Teh, Y.: Asynchronous anytime sequential Monte Carlo. In: Advances in Neural Information Processing Systems (2014)
[7]
Stan Development Team: Stan: A C++ Library for Probability and Sampling, Version 2.4 (2014)
[8]
Wingate, D., Stuhlmüller, A., Goodman, N.D.: Lightweight implementations of probabilistic programming languages via transformational compilation. In: Proc. of the 14th Artificial Intelligence and Statistics (2011)
[9]
Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic programming inference. In: Artificial Intelligence and Statistics (2014)
[10]
Yang, L., Hanrahan, P., Goodman, N.D.: Generating efficient MCMC kernels from probabilistic programs. In: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, pp. 1068-1076 (2014)

Cited By

View all
  • (2024)Static Posterior Inference of Bayesian Probabilistic Programming via Polynomial SolvingProceedings of the ACM on Programming Languages10.1145/36564328:PLDI(1361-1386)Online publication date: 20-Jun-2024
  • (2022)Generative Datalog with Continuous DistributionsJournal of the ACM10.1145/355910269:6(1-52)Online publication date: 30-Aug-2022
  • (2022)Independence in Infinite Probabilistic DatabasesJournal of the ACM10.1145/354952569:5(1-42)Online publication date: 10-Aug-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
ECMLPKDD'15: Proceedings of the 2015th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part III
September 2015
340 pages
ISBN:9783319234601

Sponsors

  • Huawei Technologies Co. Ltd.: Huawei Technologies Co. Ltd.
  • Zalando: Zalando
  • ONRGlobal: U.S. Office of Naval Research Global
  • BNPPARIBAS: BNP PARIBAS
  • Amazon: Amazon.com

Publisher

Springer

Gewerbestrasse 11 CH-6330, Cham (ZG), Switzerland

Publication History

Published: 07 September 2015

Author Tag

  1. Probabilistic programming

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Static Posterior Inference of Bayesian Probabilistic Programming via Polynomial SolvingProceedings of the ACM on Programming Languages10.1145/36564328:PLDI(1361-1386)Online publication date: 20-Jun-2024
  • (2022)Generative Datalog with Continuous DistributionsJournal of the ACM10.1145/355910269:6(1-52)Online publication date: 30-Aug-2022
  • (2022)Independence in Infinite Probabilistic DatabasesJournal of the ACM10.1145/354952569:5(1-42)Online publication date: 10-Aug-2022
  • (2022)Guaranteed bounds for posterior inference in universal probabilistic programmingProceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation10.1145/3519939.3523721(536-551)Online publication date: 9-Jun-2022
  • (2021)On probabilistic termination of functional programs with continuous distributionsProceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation10.1145/3453483.3454111(1312-1326)Online publication date: 19-Jun-2021
  • (2021)Intersection types and (positive) almost-sure terminationProceedings of the ACM on Programming Languages10.1145/34343135:POPL(1-32)Online publication date: 4-Jan-2021
  • (2019)End-User Probabilistic ProgrammingQuantitative Evaluation of Systems10.1007/978-3-030-30281-8_1(3-24)Online publication date: 10-Sep-2019
  • (2018)Probabilistic programming with programmable inferenceACM SIGPLAN Notices10.1145/3296979.319240953:4(603-616)Online publication date: 11-Jun-2018
  • (2018)Probabilistic programming with programmable inferenceProceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation10.1145/3192366.3192409(603-616)Online publication date: 11-Jun-2018
  • (2016)Design and Implementation of Probabilistic Programming Language AnglicanProceedings of the 28th Symposium on the Implementation and Application of Functional Programming Languages10.1145/3064899.3064910(1-12)Online publication date: 31-Aug-2016

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media