Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-319-04048-6_13guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

RNRank: Network-Based Ranking on Relational Tuples

Published: 03 August 2013 Publication History

Abstract

Conventional relational top-k queries ignore the inherent referential relationships existing between tuples that can effectively link all tuples of a database together. A relational database can be viewed as a network of tuples connected via foreign keys. With respect to the semantics defined over the foreign keys, the most referenced tuples, therefore, can be regarded as either the most influential, relevant, popular, or authoritative objects stored in a relational database according to its domain semantics. In this paper we propose a novel network-based ranking approach to discover those tuples that are mostly referenced in a relational database as top-k query results. Compared with the conventional relational top-k query processing, our approach can provide information about network structured relational tuples and expand top-k query results as recommendations to users using linkage information in databases. Our experiments on sample relational databases demonstrate the effectiveness and efficiency of our proposed RNRank Relational Network-based Rank approach.

References

[1]
Date, C.J.: An Introduction to Database Systems, 8th edn. Pearson/Addison Wesley, Boston 2004
[2]
Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. 404, 1---58 2008
[3]
Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: PODS 2001, pp. 102---113 2001
[4]
Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases: Mapping strategies and performance evaluation. ACM Trans. Database Syst., 153---187 2002
[5]
Zhang, Z., won Hwang, S., Chang, K.C.C., Wang, M., Lang, C.A., Chang, Y.C.: Boolean + ranking: querying a database by k-constrained optimization. In: SIGMOD Conference 2006, pp. 359---370 2006
[6]
Brzsnyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE 2001, pp. 421---430 2001
[7]
Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P.: Link analysis ranking: algorithms, theory, and experiments. ACM Trans. Internet Techn., 231---297 2005
[8]
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab November 1999
[9]
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM, 604---632 1999
[10]
Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: Rankclus: integrating clustering with ranking for heterogeneous information network analysis. In: EDBT 2009, pp. 565---576 2009
[11]
Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information networks with star network schema. In: KDD 2009, pp. 797---806 2009
[12]
Taskar, B., Segal, E., Koller, D.: Probabilistic classification and clustering in relational data. In: IJCAI 2001, pp. 870---878 2001
[13]
Long, B., Zhang, Z.M., Yu, P.S.: A probabilistic framework for relational clustering. In: KDD 2007, pp. 470---479 2007
[14]
Han, J., Sun, Y., Yan, X., Yu, P.S.: Mining knowledge from databases: an information network analysis approach. In: SIGMOD Conference 2010, pp. 1251---1252 2010
[15]
Senator, T.E.: Link mining applications: progress and challenges. SIGKDD Expl., 76---83 2005
[16]
Yin, X., Han, J., Yu, P.S.: Linkclus: Efficient clustering via heterogeneous semantic links. In: VLDB 2006, pp. 427---438 2006
[17]
Soussi, R., Aufaure, M.A., Zghal, H.B.: Towards social network extraction using a graph database. In: DBKDA 2010, pp. 28---34 2010
[18]
Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based keyword search in databases. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, vol. 30, pp. 564---575. VLDB Endowment 2004
[19]
Frank, A., Asuncion, A.: UCI machine learning repository 2010
[20]
Yu, H., Huang, X., Hu, X., Cai, H.: A comparative study on data mining algorithms for individual credit risk evaluation. In: ICMeCG 2010, pp. 35 ---38 2010

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
International Workshop on Behavior and Social Informatics on Behavior and Social Computing - Volume 8178
August 2013
263 pages
ISBN:9783319040479
  • Editors:
  • Longbing Cao,
  • Hiroshi Motoda,
  • Jaideep Srivastava,
  • Ee-Peng Lim,
  • Irwin King,
  • Philip Yu,
  • Wolfgang Nejdl,
  • Guandong Xu,
  • Gang Li,
  • Ya Zhang

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 03 August 2013

Author Tags

  1. Information network
  2. Network-based ranking
  3. Relational tuples

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media