Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-38857-6_24guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Fly H1-Cell Distance Estimation in a Monocular Virtual Reality Environment

Published: 01 August 2023 Publication History

Abstract

The ability of animals and robots to move through a given environment without colliding with any obstacles requires a robust distance estimation mechanism. Previous electrophysiological studies and work using a biohybrid fly-robot-interface (FRI) suggest that fly directional-selective interneurons may be involved in the neural control of collision-avoidance behaviour. We have set up a virtual reality (FlyVR) environment and studied the blowfly’s H1-cell, an interneuron analyzing visual wide-field motion, to access its distance-dependent responses that was discovered using the FRI. The results gathered under open-loop FlyVR conditions are in qualitative agreement with open- and closed-loop data obtained on the FRI. They suggest that the capability of flies to estimate distance may depend on the animal’s specific movement trajectory in combination with the receptive field properties of the H1-cell. Our findings in the fly motion vision pathway may inform the design of energy-efficient collision avoidance strategies for autonomous robotic systems.

References

[1]
Madsen PT and Surlykke A Functional convergence in bat and toothed whale biosonars Physiology 2013 28 276-283
[2]
Shieh K-T, Wilson W, Winslow M, McBRIDE DW Jr, and Hopkins CD Short-range orientation in electric fish: an experimental study of passive electrolocation J. Exp. Biol. 1996 199 2383-2393
[3]
Czech-Damal NU, Dehnhardt G, Manger P, and Hanke W Passive electroreception in aquatic mammals J. Comp. Physiol. A. 2013 199 555-563
[4]
Nityananda V and Read JCA Stereopsis in animals: evolution, function and mechanisms J. Exp. Biol. 2017 220 2502-2512
[5]
Read JCA Binocular vision and stereopsis across the animal kingdom Ann. Rev. Vis. Sci. 2021 7 389-415
[6]
Kral K and Poteser M Motion parallax as a source of distance information in locusts and mantids J. Insect. Behav. 1997 10 145-163
[7]
Koenderink JJ and van Doorn AJ Facts on optic flow Biol. Cybern. 1987 56 247-254
[8]
Kern R, Boeddeker N, Dittmar L, and Egelhaaf M Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information J. Exp Biol. 2012 215 2501-2514
[9]
Serres JR and Ruffier F Optic flow-based collision-free strategies: from insects to robots Arthropod Struct. Dev. 2017 46 703-717
[10]
Buchner E Elementary movement detectors in an insect visual system Biol. Cybernetics. 1976 24 85-101
[11]
Hassenstein B and Reichardt W Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus Zeitschrift für Naturforschung B. 1956 11 513-524
[12]
O’Carroll DC, Bidweii NJ, Laughlin SB, and Warrant EJ Insect motion detectors matched to visual ecology Nature 1996 382 63-66
[13]
Huang JV and Krapp HG Lepora NF, Mura A, Krapp HG, Verschure PFMJ, and Prescott TJ Miniaturized electrophysiology platform for fly-robot interface to study multisensory integration Biomimetic and Biohybrid Systems 2013 Heidelberg Springer 119-130
[14]
Srinivasan MV, Zhang SW, Lehrer M, and Collett TS Honeybee navigation en route to the goal: visual flight control and odometry J. Exp. Biol. 1996 199 237-244
[15]
Srinivasan MV, Poteser M, and Kral K Motion detection in insect orientation and navigation Vision. Res. 1999 39 2749-2766
[16]
Hengstenberg R Varjú PD and Schnitzler PH-U Roll-stabilization during flight of the blowfly’s head and body by mechanical and visual cues Localization and Orientation in Biology and Engineering 1984 Heidelberg Springer 121-134
[17]
Schilstra C and van Hateren JH Stabilizing gaze in flying blowflies Nature 1998 395 654
[18]
Krapp HG, Taylor GK, and Sean Humbert J Barth FG, Humphrey JAC, and Srinivasan MV The mode-sensing hypothesis: matching sensors, actuators and flight dynamics Frontiers in Sensing 2012 Vienna Springer 101-114
[19]
Krapp HG and Hengstenberg R Estimation of self-motion by optic flow processing in single visual interneurons Nature 1996 384 463-466
[20]
Hausen K Functional characterization and anatomical identification of motion sensitive neurons in the Lobula plate of the blowfly Calliphora erythrocephala Zeitschrift für Naturforschung C. 1976 31 629-634
[21]
Krapp HG and Hengstenberg R A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons Vision. Res. 1997 37 225-234
[22]
Borst A, Haag J, and Mauss AS How fly neurons compute the direction of visual motion J. Comp. Physiol. A. 2019 206 2 109-124
[23]
Krapp HG, Hengstenberg R, and Egelhaaf M Binocular contributions to optic flow processing in the fly visual system J. Neurophysiol. 2001 85 724-734
[24]
Huang JV, Wang Y, and Krapp HG Lepora NFF, Mura A, Mangan M, Verschure PFMJFMJ, Desmulliez M, and Prescott TJJ Wall following in a semi-closed-loop fly-robotic interface Biomimetic and Biohybrid Systems 2016 Cham Springer 85-96
[25]
Huang JV, Wei Y, and Krapp HG A biohybrid fly-robot interface system that performs active collision avoidance Bioinspir. Biomim. 2019 14 065001
[26]
Huang JV, Wei Y, Krapp HG, et al. Vouloutsi V et al. Active collision free closed-loop control of a biohybrid fly-robot interface Biomimetic and Biohybrid Systems 2018 Cham Springer 213-222
[27]
Huang JV and Krapp HG Mangan M, Cutkosky M, Mura A, Verschure PFMJ, Prescott T, and Lepora N Neuronal distance estimation by a fly-robot interface Biomimetic and Biohybrid Systems 2017 Cham Springer 204-215
[28]
Franceschini N Wehner R Pupil and pseudopupil in the compound eye of drosophila Information Processing in the Visual Systems of Anthropods 1972 Heidelberg Springer 75-82
[29]
Karmeier K, Tabor R, Egelhaaf M, and Krapp HG Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway Vis. Neurosci. 2001 18 1-8
[30]
Laughlin SB and Hardie RC Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly J. Comp. Physiol. 1978 128 319-340
[31]
Egelhaaf, M., Borst, A.: Transient and steady-state response properties of movement detectors. J. Opt. Soc. Am. A, JOSAA. 6, 116–127 (1989).
[32]
Harris RA, O’Carroll DC, and Laughlin SB Contrast gain reduction in fly motion adaptation Neuron 2000 28 595-606
[33]
Burton BG and Laughlin SB Neural images of pursuit targets in the photoreceptor arrays of male and female houseflies Musca domestica J. Exp. Biol. 2003 206 3963-3977
[34]
Parsons MM, Krapp HG, and Laughlin SB A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli J. Exp. Biol. 2006 209 4464-4474
[35]
Longden, K.D., Krapp, H.G.: Octopaminergic modulation of temporal frequency coding in an identified optic flow-processing interneuron. Front. Syst. Neurosci. 4, 153 (2010).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Biomimetic and Biohybrid Systems: 12th International Conference, Living Machines 2023, Genoa, Italy, July 10–13, 2023, Proceedings, Part I
Jul 2023
476 pages
ISBN:978-3-031-38856-9
DOI:10.1007/978-3-031-38857-6
  • Editors:
  • Fabian Meder,
  • Alexander Hunt,
  • Laura Margheri,
  • Anna Mura,
  • Barbara Mazzolai

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 August 2023

Author Tags

  1. H1-cell
  2. virtual reality
  3. distance estimation
  4. blowfly

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media