Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-31975-4_54guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Multi-view Normal Estimation – Application to Slanted Plane-Sweeping

Published: 21 May 2023 Publication History

Abstract

In this paper, we show how to estimate the normals of a 3D surface from a minimum of two views, assuming that the poses of a calibrated camera are perfectly known. For each pair of image points, the normal at the corresponding 3D point is expressed in function of the local gradients of the grey level, whatever the type of image formation (orthogonal or perspective projection). As an application, this allows us to fully estimate the inter-image homography, which not only depends on the relative pose between views, but also on the local orientation of the surface. Hence, the photo-consistency between patches from two images, which is the basis of the so-called “plane-sweeping” method, is improved. Experiments on synthetic and real data validate our approach.

References

[1]
Agarwal S et al. Building Rome in a day Commun. ACM 2011 54 10 105-112
[2]
Bartoli A, Gérard Y, Chadebecq F, Collins T, and Pizarro D Shape-from-template PAMI 2015 37 10 2099-2118
[3]
Birchfield, S., Tomasi, C.: Multiway cut for stereo and motion with slanted surfaces. In: ICCV (1999)
[4]
Burt, P.J., Wixson, L.E., Salgian, G.: Electronically directed “focal” stereo. In: ICCV (1995)
[5]
Chen, W., et al.: Learning to predict 3D objects with an interpolation-based differentiable renderer. In: NeurIPS (2019)
[6]
Chen, W., et al.: DIB-R++: learning to predict lighting and material with a hybrid differentiable renderer. In: NeurIPS (2021)
[7]
Furukawa Y and Hernàndez C Multi-view stereo: a tutorial Found. Trends Comput. Graph. Vis. 2013 9 1–2 1-148
[8]
Furukawa Y and Ponce J Accurate, dense, and robust multiview stereopsis PAMI 2010 32 8 1362-1376
[9]
Galliani, S., Lasinger, K., Schindler, K.: Massively parallel multiview stereopsis by surface normal diffusion. In: ICCV, pp. 873–881 (2015)
[10]
Gallup, D., Frahm, J., Mordohai, P., Yang, Q., Pollefeys, M.: Real-time plane-sweeping stereo with multiple sweeping directions. In: CVPR (2007)
[11]
Gårding J and Lindeberg T Direct computation of shape cues using scale-adapted spatial derivative operators IJCV 1996 17 2 163-191
[12]
Goesele, M., Curless, B., Seitz, S.M.: Multi-view stereo revisited. In: CVPR, vol. 2, pp. 2402–2409 (2006)
[13]
Griwodz, C., et al.: AliceVision Meshroom: an open-source 3D reconstruction pipeline. In: ACM Multimedia Systems Conference, pp. 241–247 (2021)
[14]
Hernández C and Schmitt F Silhouette and stereo fusion for 3D object modeling CVIU 2004 96 3 367-392
[15]
Jiang, Y., Ji, D., Han, Z., Zwicker, M.: SDFDiff: differentiable rendering of signed distance fields for 3D shape optimization. In: CVPR (2020)
[16]
Kazhdan MM and Hoppe H Screened poisson surface reconstruction ACM Trans. Graph. 2013 32 3 1-13
[17]
Liao, Y., Donné, S., Geiger, A.: Deep marching cubes: learning explicit surface representations. In: CVPR (2018)
[18]
Lindeberg T and Gårding J Eklundh J-O Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D brightness structure Computer Vision — ECCV ’94 1994 Heidelberg Springer 389-400
[19]
Liu, H.D., Williams, F., Jacobson, A., Fidler, S., Litany, O.: Learning smooth neural functions via Lipschitz regularization. In: SIGGRAPH (2022)
[20]
Liu, J., et al.: PlaneMVS: 3D plane reconstruction from multi-view stereo. In: CVPR (2022)
[21]
Liu, S., Chen, W., Li, T., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3D reasoning. In: ICCV (2019)
[22]
Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, and Ng R NeRF: representing scenes as neural radiance fields for view synthesis Commun. ACM 2022 65 1 99-106
[23]
Munkberg, J., et al.: Extracting triangular 3D models, materials, and lighting from images. In: CVPR (2022)
[24]
Niemeyer, M., Mescheder, L.M., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: CVPR (2020)
[25]
Schönberger JL, Zheng E, Frahm J-M, and Pollefeys M Leibe B, Matas J, Sebe N, and Welling M Pixelwise view selection for unstructured multi-view stereo Computer Vision – ECCV 2016 2016 Cham Springer 501-518
[26]
Shen, T., Gao, J., Yin, K., Liu, M., Fidler, S.: Deep marching tetrahedra: a hybrid representation for high-resolution 3D shape synthesis. In: NeurIPS (2021)
[27]
Strecha, C., Fransens, R., Gool, L.V.: Wide-baseline stereo from multiple views: a probabilistic account. In: CVPR (2004)
[28]
Zabulis, X., Daniilidis, K.: Multi-camera reconstruction based on surface normal estimation and best viewpoint selection. In: 3DPVT (2004)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Scale Space and Variational Methods in Computer Vision: 9th International Conference, SSVM 2023, Santa Margherita di Pula, Italy, May 21–25, 2023, Proceedings
May 2023
766 pages
ISBN:978-3-031-31974-7
DOI:10.1007/978-3-031-31975-4

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 21 May 2023

Author Tags

  1. Normal Estimation
  2. Multi-view Stereo
  3. Plane-sweeping

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media