Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-30823-9_9guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Feature Necessity & Relevancy in ML Classifier Explanations

Published: 22 April 2023 Publication History

Abstract

Given a machine learning (ML) model and a prediction, explanations can be defined as sets of features which are sufficient for the prediction. In some applications, and besides asking for an explanation, it is also critical to understand whether sensitive features can occur in some explanation, or whether a non-interesting feature must occur in all explanations. This paper starts by relating such queries respectively with the problems of relevancy and necessity in logic-based abduction. The paper then proves membership and hardness results for several families of ML classifiers. Afterwards the paper proposes concrete algorithms for two classes of classifiers. The experimental results confirm the scalability of the proposed algorithms.

References

[1]
Akers, S.B.: Binary decision diagrams. IEEE Transactions on computers27(06), 509–516 (1978)
[2]
Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García,S., Sánchez, L., Herrera, F.: Keel data-mining software tool: data setrepository, integration of algorithms and experimental analysis framework.Journal of Multiple-Valued Logic & Soft Computing 17 (2011), https://sci2s.ugr.es/keel/dataset.php?cod=21
[3]
Amgoud, L., Ben-Naim, J.: Axiomatic foundations of explainability. In: IJCAI.pp. 636–642 (2022)
[4]
Arenas, M., Baez, D., Barceló, P., Pérez, J., Subercaseaux, B.:Foundations of symbolic languages for model interpretability. In: NeurIPS(2021)
[5]
Arenas, M., Barceló, P., Romero, M., Subercaseaux, B.: On computingprobabilistic explanations for decision trees. CoRR abs/2207.12213(2022). 10.48550/arXiv.2207.12213, https://doi.org/10.48550/arXiv.2207.12213
[6]
Arora, S., Barak, B.: Computational Complexity - A Modern Approach. CambridgeUniversity Press (2009), http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
[7]
Audemard, G., Bellart, S., Bounia, L., Koriche, F., Lagniez, J., Marquis, P.:On the computational intelligibility of boolean classifiers. In: KR. pp.74–86 (2021)
[8]
Audemard, G., Koriche, F., Marquis, P.: On tractable XAI queries based oncompiled representations. In: KR. pp. 838–849 (2020)
[9]
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.:On pixel-wise explanations for non-linear classifier decisions by layer-wiserelevance propagation. PloS one 10(7), e0130140 (2015)
[10]
Barceló, P., Monet, M., Pérez, J., Subercaseaux, B.: Modelinterpretability through the lens of computational complexity. In: NeurIPS(2020)
[11]
Bekker, J., Davis, J., Choi, A., Darwiche, A., den Broeck, G.V.: Tractablelearning for complex probability queries. In: NeurIPS. pp. 2242–2250 (2015), https://github.com/ML-KULeuven/LearnSDD
[12]
Bengio, Y., LeCun, Y., Hinton, G.E.: Deep learning for AI. Commun. ACM64(7), 58–65 (2021), https://doi.org/10.1145/3448250
[13]
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook ofSatisfiability - Second Edition, Frontiers in Artificial Intelligence andApplications, vol. 336. IOS Press (2021), https://doi.org/10.3233/FAIA336
[14]
Blanc, G., Lange, J., Tan, L.: Provably efficient, succinct, and preciseexplanations. In: NeurIPS (2021)
[15]
Boumazouza, R., Alili, F.C., Mazure, B., Tabia, K.: ASTERYX: Amodel-Agnostic SaT-basEd appRoach for sYmbolic and score-basedeXplanations. In: CIKM. pp. 120–129 (2021)
[16]
Brayton, R.K., Hachtel, G.D., McMullen, C., Sangiovanni-Vincentelli, A.: Logicminimization algorithms for VLSI synthesis, vol. 2. Springer Science &Business Media (1984)
[17]
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). 10.1023/A:1010933404324, https://doi.org/10.1023/A:1010933404324
[18]
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification andRegression Trees. Wadsworth (1984)
[19]
Clark, P., Boswell, R.: Rule induction with cn2: Some recent improvements. In:European Working Session on Learning. pp. 151–163. Springer (1991)
[20]
Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guidedabstraction refinement for symbolic model checking. J. ACM 50(5),752–794 (2003). 10.1145/876638.876643,https://doi.org/10.1145/876638.876643
[21]
Daniels, H., Velikova, M.: Monotone and partially monotone neural networks.IEEE Trans. Neural Networks 21(6), 906–917 (2010)
[22]
Darwiche, A.: SDD: A new canonical representation of propositional knowledge bases. In: IJCAI. pp. 819–826 (2011).
[23]
Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res.17, 229–264 (2002). 10.1613/jair.989
[24]
Darwiche, A., Marquis, P.: On quantifying literals in boolean logic and itsapplications to explainable AI. J. Artif. Intell. Res. 72,285–328 (2021)
[25]
Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM42(1), 3–42 (1995), https://doi.org/10.1145/200836.200838
[26]
Fard, M.M., Canini, K.R., Cotter, A., Pfeifer, J., Gupta, M.R.: Fast and flexible monotonic functions with ensembles of lattices. In: NeurIPS. pp. 2919–2927 (2016).
[27]
Ferreira, J., de Sousa Ribeiro, M., Gonçalves, R., Leite, J.: Looking inside the black-box: Logic-based explanations for neural networks. In: KR. p. 432–442 (2022).
[28]
Flach, P.A.: Machine Learning - The Art and Science of Algorithms that Make Sense of Data. CUP (2012).
[29]
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals of statistics pp. 1189–1232 (2001).
[30]
Friedrich, G., Gottlob, G., Nejdl, W.: Hypothesis classification, abductive diagnosis and therapy. In: ESE. pp. 69–78 (1990).
[31]
Gergov, J., Meinel, C.: Efficient boolean manipulation with OBDD’s can beextended to FBDD’s. IEEE Transactions on Computers 43(10),1197–1209 (1994). 10.1109/12.324545
[32]
Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptivecomputation and machine learning, MIT Press (2016),http://www.deeplearningbook.org/
[33]
Gorji, N., Rubin, S.: Sufficient reasons for classifier decisions in the presence of domain constraints. In: AAAI (February 2022).
[34]
Haaren, J.V., Davis, J.: Markov network structure learning: A randomized feature generation approach. In: AAAI (2012).
[35]
Huang, X., Izza, Y., Ignatiev, A., Cooper, M.C., Asher, N., Marques-Silva, J.: Tractable explanations for d-DNNF classifiers. In: AAAI. pp. 5719–5728 (2022).
[36]
Huang, X., Izza, Y., Ignatiev, A., Marques-Silva, J.: On efficiently explaining graph-based classifiers. In: KR. pp. 356–367 (2021).
[37]
Ignatiev, A., Izza, Y., Stuckey, P.J., Marques-Silva, J.: Using MaxSAT for efficient explanations of tree ensembles. In: AAAI. pp. 3776–3785 (2022).
[38]
Ignatiev, A., Marques-Silva, J.: SAT-based rigorous explanations for decision lists. In: SAT. pp. 251–269 (2021).
[39]
Ignatiev, A., Narodytska, N., Asher, N., Marques-Silva, J.: From contrastive to abductive explanations and back again. In: AIxIA. pp. 335–355 (2020).
[40]
Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for machine learning models. In: AAAI. pp. 1511–1519 (2019).
[41]
Ignatiev, A., Pereira, F., Narodytska, N., Marques-Silva, J.: A SAT-based approach to learn explainable decision sets. In: IJCAR. pp. 627–645 (2018).
[42]
Izza, Y., Ignatiev, A., Marques-Silva, J.: On tackling explanation redundancyin decision trees. J. Artif. Intell. Res. 75, 261–321 (2022),https://doi.org/10.1613/jair.1.13575
[43]
Izza, Y., Marques-Silva, J.: On explaining random forests with SAT. In: IJCAI. pp. 2584–2591 (2021).
[44]
Kohavi, R.: Bottom-up induction of oblivious read-once decision graphs: strengths and limitations. In: AAAI. pp. 613–618 (1994).
[45]
Kohavi, R., et al.: Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In: Kdd. vol. 96, pp. 202–207 (1996).
[46]
Larochelle, H., Murray, I.: The neural autoregressive distribution estimator. In: AISTATS. pp. 29–37 (2011).
[47]
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553),436–444 (2015)
[48]
Liu, X., Han, X., Zhang, N., Liu, Q.: Certified monotonic neural networks. In: NeurIPS (2020).
[49]
Lowd, D., Davis, J.: Learning Markov network structure with decision trees. In: ICDM. pp. 334–343 (2010).
[50]
Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: NeurIPS. pp. 4765–4774 (2017).
[51]
Malfa, E.L., Michelmore, R., Zbrzezny, A.M., Paoletti, N., Kwiatkowska, M.: On guaranteed optimal robust explanations for NLP models. In: IJCAI. pp. 2658–2665 (2021).
[52]
Marques-Silva, J., Gerspacher, T., Cooper, M.C., Ignatiev, A., Narodytska, N.: Explaining naive bayes and other linear classifiers with polynomial time and delay. In: NeurIPS (2020).
[53]
Marques-Silva, J., Gerspacher, T., Cooper, M.C., Ignatiev, A., Narodytska, N.: Explanations for monotonic classifiers. In: ICML. pp. 7469–7479 (2021).
[54]
Marques-Silva, J., Ignatiev, A.: Delivering trustworthy AI through formal XAI. In: AAAI. pp. 12342–12350 (2022).
[55]
Miller, T.: Explanation in artificial intelligence: Insights from the socialsciences. Artif. Intell. 267, 1–38 (2019)
[56]
Müller, B., Reinhardt, J., Strickland, M.T.: Neural networks: an introduction. Springer Science & Business Media (1995).
[57]
Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.:PMLB: a large benchmark suite for machine learning evaluation andcomparison. BioData Mining 10(1),  36 (2017),https://epistasislab.github.io/pmlb/index.html
[58]
Ribeiro, M.T., Singh, S., Guestrin, C.: "Why should I trust you?": Explaining the predictions of any classifier. In: KDD. pp. 1135–1144 (2016).
[59]
Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic explanations. In: AAAI. pp. 1527–1535 (2018).
[60]
Rivest, R.L.: Learning decision lists. Mach. Learn. 2(3), 229–246(1987)
[61]
Selman, B., Levesque, H.J.: Abductive and default reasoning: A computational core. In: AAAI. pp. 343–348 (1990).
[62]
Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning - From Theory to Algorithms. Cambridge University Press (2014).
[63]
Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining bayesian network classifiers. In: IJCAI. pp. 5103–5111 (2018).
[64]
Sill, J.: Monotonic networks. In: NIPS. pp. 661–667 (1997).
[65]
Sivaraman, A., Farnadi, G., Millstein, T.D., den Broeck, G.V.: Counterexample-guided learning of monotonic neural networks. In: NeurIPS (2020).
[66]
Van den Broeck, G., Darwiche, A.: On the role of canonicity in knowledge compilation. In: AAAI. pp. 1641–1648 (2015).
[67]
Wäldchen, S., MacDonald, J., Hauch, S., Kutyniok, G.: The computationalcomplexity of understanding binary classifier decisions. J. Artif. Intell.Res. 70, 351–387 (2021),https://doi.org/10.1613/jair.1.12359
[68]
Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM (2000), https://ls2-www.cs.uni-dortmund.de/monographs/bdd/.
[69]
Wehenkel, A., Louppe, G.: Unconstrained monotonic neural networks. In: NeurIPS. pp. 1543–1553 (2019).
[70]
You, S., Ding, D., Canini, K.R., Pfeifer, J., Gupta, M.R.: Deep lattice networks and partial monotonic functions. In: NeurIPS. pp. 2981–2989 (2017), https://github.com/tensorflow/lattice.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Tools and Algorithms for the Construction and Analysis of Systems: 29th International Conference, TACAS 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22–27, 2023, Proceedings, Part I
Apr 2023
717 pages
ISBN:978-3-031-30822-2
DOI:10.1007/978-3-031-30823-9
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 22 April 2023

Author Tags

  1. Formal Explainability
  2. Abduction
  3. Abstraction Refinement.

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media