Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-25198-6_22guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Answering Why-Not Questions on GeoSPARQL Queries

Published: 10 February 2023 Publication History

Abstract

Nowadays geo-spatial knowledge graph is expanding gradually in Location Bases Services (LBS) to improve the search relevancy as well as to present background information about points of interests. They allow answering complex GeoSPARQL queries efficiently by returning a subset of records that match the query. Now consider if a query does not return a record that you believe should be returned, a natural question is to ask for an explanation “why not?”. In this study, we firstly formalize the why-not question on GeoSPARQL queries, then propose a novel framework called AWQG (Answering Why-Not Questions on GeoSPARQL), which is capable of answering why-not questions based on a penalty function. AWQG generates logical explanations to help users refine their initial queries at the levels of topological functions and spatial constraints. The experimental results show that the model provides high-quality explanations of why-not questions for GeoSPARQL queries efficiently.

References

[1]
Bidoit, N., Herschel, M., Tzompanaki, K.: Query-based why-not provenance with NedExplain. In: Extending Database Technology (EDBT) (2014)
[2]
Calvanese D, Ortiz M, Simkus M, and Stefanoni G Reasoning about explanations for negative query answers in DL-Lite J. Artifi. Intell. Res. 2013 48 635-669
[3]
Chang, B., Jang, G., Kim, S., Kang, J.: Learning graph-based geographical latent representation for point-of-interest recommendation. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pp. 135–144 (2020)
[4]
Chapman, A., Jagadish, H.: Why not? In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, pp. 523–534. ACM (2009)
[5]
Chen, L., Li, Y., Xu, J., Jensen, C.S.: Direction-aware why-not spatial keyword top-k queries. In: 2017 IEEE 33rd International Conference on Data Engineering, pp. 107–110. IEEE (2017)
[6]
Chen, L., Xu, J., Lin, X., Jensen, C.S., Hu, H.: Answering why-not spatial keyword top-k queries via keyword adaption. In: 2016 IEEE 32nd International Conference on Data Engineering, pp. 697–708. IEEE (2016)
[7]
Consortium, O.G., et al.: OGC GeoSPARQL-A geographic query language for RDF data. OGC Candidate Implementation Standard 2 (2012)
[8]
World Wide Web Consortium, et al.: SPARQL 1.1 overview (2013)
[9]
World Wide Web Consortium, et al.: RDF 1.1 concepts and abstract syntax (2014)
[10]
Cui Y and Widom J Lineage tracing for general data warehouse transformations VLDB J. Int. J. Very Large Data Bases 2003 12 1 41-58
[11]
Damásio CV, Analyti A, Antoniou G, et al. Cudré-Mauroux P et al. Provenance for SPARQL queries The Semantic Web – ISWC 2012 2012 Heidelberg Springer 625-640
[12]
Herschel M and Hernández MA Explaining missing answers to SPJUA queries Proc. VLDB Endow. 2010 3 1–2 185-196
[13]
Huang J, Chen T, Doan A, and Naughton JF On the provenance of non-answers to queries over extracted data Proc. VLDB Endow. 2008 1 1 736-747
[14]
Islam MS, Liu C, and Li J Efficient answering of why-not questions in similar graph matching IEEE Trans. Knowl. Data Eng. 2015 27 10 2672-2686
[15]
Perry, M., Herring, J.: OGC GeoSPARQL-A geographic query language for RDF data. OGC Implementation Standard, September 2012
[16]
Ten Cate, B., Civili, C., Sherkhonov, E., Tan, W.C.: High-level why-not explanations using ontologies. In: Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 31–43. ACM (2015)
[17]
Theoharis, Y., Fundulaki, I., Karvounarakis, G., Christophides, V.: On provenance of queries on semantic web data. IEEE Internet Comput. 15(1), 31–39 (2011)
[18]
Yin H, Wang W, Wang H, Chen L, and Zhou X Spatial-aware hierarchical collaborative deep learning for POI recommendation IEEE Trans. Knowl. Data Eng. 2017 29 11 2537-2551
[19]
Zhou, F., Yin, R., Zhang, K., Trajcevski, G., Zhong, T., Wu, J.: Adversarial point-of-interest recommendation. In: The Web Conference, pp. 3462–34618 (2019)

Index Terms

  1. Answering Why-Not Questions on GeoSPARQL Queries
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        Web and Big Data: 6th International Joint Conference, APWeb-WAIM 2022, Nanjing, China, November 25–27, 2022, Proceedings, Part II
        Aug 2022
        569 pages
        ISBN:978-3-031-25197-9
        DOI:10.1007/978-3-031-25198-6
        • Editors:
        • Bohan Li,
        • Lin Yue,
        • Chuanqi Tao,
        • Xuming Han,
        • Diego Calvanese,
        • Toshiyuki Amagasa

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 10 February 2023

        Author Tags

        1. GeoSPARQL
        2. Missing answers
        3. Why-not
        4. Spatial query

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 17 Dec 2024

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media