Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-25063-7_16guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Efficient Image Super-Resolution Using Vast-Receptive-Field Attention

Published: 16 February 2023 Publication History

Abstract

The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel attention module and gradually modify it to achieve better super-resolution performance with reduced parameters. The specific approaches include: (1) increasing the receptive field of the attention branch, (2) replacing large dense convolution kernels with depthwise separable convolutions, and (3) introducing pixel normalization. These approaches paint a clear evolutionary roadmap for the design of attention mechanisms. Based on these observations, we propose VapSR, the Vast-receptive-field Pixel attention network. Experiments demonstrate the superior performance of VapSR. VapSR outperforms the present lightweight networks with even fewer parameters. And the light version of VapSR can use only 21.68% and 28.18% parameters of IMDB and RFDN to achieve similar performances to those networks. The code and models are available at https://github.com/zhoumumu/VapSR.

References

[1]
Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: Dataset and study. In: CVPRW, pp. 126–135 (2017)
[2]
Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: ECCV, pp. 252–268 (2018)
[3]
Athiwaratkun, B., Finzi, M., Izmailov, P., Wilson, A.G.: There are many consistent explanations of unlabeled data: why you should average. arXiv preprint arXiv:1806.05594 (2018)
[4]
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
[5]
Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC, pp. 135.1–135.10 (2012)
[6]
Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, and Zagoruyko S Vedaldi A, Bischof H, Brox T, and Frahm J-M End-to-end object detection with transformers Computer Vision – ECCV 2020 2020 Cham Springer 213-229
[7]
Chen, H., et al.: Pre-trained image processing transformer. In: CVPR, pp. 12299–12310 (2021)
[8]
Chen, H., Gu, J., Zhang, Z.: Attention in attention network for image super-resolution. arXiv preprint arXiv:2104.09497 (2021)
[9]
Chen, X., Wang, X., Zhou, J., Dong, C.: Activating more pixels in image super-resolution transformer. arXiv preprint arXiv:2205.04437 (2022)
[10]
Choi, J.S., Kim, M.: A deep convolutional neural network with selection units for super-resolution. In: CVPRW, pp. 154–160 (2017)
[11]
Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: CVPR, pp. 11065–11074 (2019)
[12]
Ding, X., Zhang, X., Han, J., Ding, G.: Scaling up your kernels to 31×31: revisiting large kernel design in CNNs. In: CVPR, pp. 11963–11975 (2022)
[13]
Dong C, Loy CC, He K, and Tang X Fleet D, Pajdla T, Schiele B, and Tuytelaars T Learning a deep convolutional network for image super-resolution Computer Vision – ECCV 2014 2014 Cham Springer 184-199
[14]
Dong C, Loy CC, and Tang X Leibe B, Matas J, Sebe N, and Welling M Accelerating the super-resolution convolutional neural network Computer Vision – ECCV 2016 2016 Cham Springer 391-407
[15]
Dosovitskiy, A., et al.: An image is worth 16×16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
[16]
Guo, M.H., Lu, C.Z., Liu, Z.N., Cheng, M.M., Hu, S.M.: Visual attention network. arXiv preprint arXiv:2202.09741 (2022)
[17]
Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)
[18]
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)
[19]
Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR, pp. 5197–5206 (2015)
[20]
Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: ACM Multimedia, pp. 2024–2032 (2019)
[21]
Hui, Z., Wang, X., Gao, X.: Fast and accurate single image super-resolution via information distillation network. In: CVPR, pp. 723–731 (2018)
[22]
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)
[23]
Jinjin G, Haoming C, Haoyu C, Xiaoxing Y, Ren JS, and Chao D Vedaldi A, Bischof H, Brox T, and Frahm J-M PIPAL: a large-scale image quality assessment dataset for perceptual image restoration Computer Vision – ECCV 2020 2020 Cham Springer 633-651
[24]
Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: CVPR, pp. 1646–1654 (2016)
[25]
Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: CVPR, pp. 1637–1645 (2016)
[26]
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
[27]
Kong, F., et al.: Residual local feature network for efficient super-resolution. In: CVPR, pp. 766–776 (2022)
[28]
Kong, F., et al.: Residual local feature network for efficient super-resolution. In: CVPRW, pp. 766–776 (2022)
[29]
Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: CVPR, pp. 624–632 (2017)
[30]
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 4681–4690 (2017)
[31]
Li, K., et al.: Uniformer: unifying convolution and self-attention for visual recognition. arXiv preprint arXiv:2201.09450 (2022)
[32]
Li, W., Lu, X., Lu, J., Zhang, X., Jia, J.: On efficient transformer and image pre-training for low-level vision. arXiv preprint arXiv:2112.10175 (2021)
[33]
Li, W., Zhou, K., Qi, L., Jiang, N., Lu, J., Jia, J.: LAPAR: linearly-assembled pixel-adaptive regression network for single image super-resolution and beyond. In: NIPS, vol. 33, pp. 20343–20355 (2020)
[34]
Li, Y., et al.: NTIRE 2022 challenge on efficient super-resolution: methods and results. In: CVPR, pp. 1062–1102 (2022)
[35]
Li, Z., et al.: Blueprint separable residual network for efficient image super-resolution. In: CVPR, pp. 833–843 (2022)
[36]
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: ICCV, pp. 1833–1844 (2021)
[37]
Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPR, pp. 136–144 (2017)
[38]
Liu J, Tang J, and Wu G Bartoli A and Fusiello A Residual feature distillation network for lightweight image super-resolution Computer Vision – ECCV 2020 Workshops 2020 Cham Springer 41-55
[39]
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)
[40]
Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: CVPR, pp. 11976–11986 (2022)
[41]
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, vol. 2, pp. 416–423 (2001)
[42]
Niu B et al. Vedaldi A, Bischof H, Brox T, Frahm J-M, et al. Single image super-resolution via a holistic attention network Computer Vision – ECCV 2020 2020 Cham Springer 191-207
[43]
Qian, G., et al.: Rethinking the pipeline of demosaicing, denoising and super-resolution. In: ICCP (2022)
[44]
Shi, S., Gu, J., Xie, L., Wang, X., Yang, Y., Dong, C.: Rethinking alignment in video super-resolution transformers. arXiv preprint arXiv:2207.08494 (2022)
[45]
Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: CVPR, pp. 3147–3155 (2017)
[46]
Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: ICCV, pp. 4539–4547 (2017)
[47]
Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: ICCV, pp. 4799–4807 (2017)
[48]
Trockman, A., Kolter, J.Z.: Patches are all you need? arXiv preprint arXiv:2201.09792 (2022)
[49]
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)
[50]
Vaswani, A., et al.: Attention is all you need. In: NIPS, vol. 30, pp. 5998–6008 (2017)
[51]
Wang Z, Bovik AC, Sheikh HR, and Simoncelli EP Image quality assessment: from error visibility to structural similarity TIP 2004 13 4 600-612
[52]
Wu, Y., He, K.: Group normalization. In: ECCV, pp. 3–19 (2018)
[53]
Zeyde R, Elad M, Protter M, et al. Boissonnat J-D et al. On single image scale-up using sparse-representations Curves and Surfaces 2012 Heidelberg Springer 711-730
[54]
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: ECCV, pp. 286–301 (2018)
[55]
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR, pp. 2472–2481 (2018)
[56]
Zhao H, Kong X, He J, Qiao Yu, and Dong C Bartoli A and Fusiello A Efficient image super-resolution using pixel attention Computer Vision – ECCV 2020 Workshops 2020 Cham Springer 56-72

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Computer Vision – ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II
Oct 2022
788 pages
ISBN:978-3-031-25062-0
DOI:10.1007/978-3-031-25063-7

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 16 February 2023

Author Tags

  1. Image super-resolution
  2. Deep convolution network
  3. Attention mechanism

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Dual residual and large receptive field network for lightweight image super-resolutionNeurocomputing10.1016/j.neucom.2024.128158600:COnline publication date: 1-Oct-2024
  • (2024)Multi-scale strip-shaped convolution attention network for lightweight image super-resolutionImage Communication10.1016/j.image.2024.117166128:COnline publication date: 1-Oct-2024
  • (2024)SMFANet: A Lightweight Self-Modulation Feature Aggregation Network for Efficient Image Super-ResolutionComputer Vision – ECCV 202410.1007/978-3-031-72973-7_21(359-375)Online publication date: 29-Sep-2024
  • (2023)Crafting training degradation distribution for the accuracy-generalization trade-off in real-world super-resolutionProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3620129(41078-41091)Online publication date: 23-Jul-2023

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media