Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-14714-2_17guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Co-evolutionary Diversity Optimisation for the Traveling Thief Problem

Published: 10 September 2022 Publication History

Abstract

Recently different evolutionary computation approaches have been developed that generate sets of high quality diverse solutions for a given optimisation problem. Many studies have considered diversity 1) as a mean to explore niches in behavioural space (quality diversity) or 2) to increase the structural differences of solutions (evolutionary diversity optimisation). In this study, we introduce a co-evolutionary algorithm to simultaneously explore the two spaces for the multi-component traveling thief problem. The results show the capability of the co-evolutionary algorithm to achieve significantly higher diversity compared to the baseline evolutionary diversity algorithms from the literature.

References

[1]
Bossek, J., Neumann, A., Neumann, F.: Breeding diverse packings for the knapsack problem by means of diversity-tailored evolutionary algorithms. In: GECCO, pp. 556–564. ACM (2021)
[2]
Bossek, J., Neumann, F.: Evolutionary diversity optimization and the minimum spanning tree problem. In: GECCO, pp. 198–206. ACM (2021)
[3]
Chagas, J.B.C., Wagner, M.: A weighted-sum method for solving the bi-objective traveling thief problem. CoRR abs/2011.05081 (2020)
[4]
Clune, J., Mouret, J., Lipson, H.: Summary of “the evolutionary origins of modularity”. In: GECCO (Companion), pp. 23–24. ACM (2013)
[5]
Cully, A., Mouret, J.: Behavioral repertoire learning in robotics. In: GECCO, pp. 175–182. ACM (2013)
[6]
Do, A.V., Bossek, J., Neumann, A., Neumann, F.: Evolving diverse sets of tours for the travelling salesperson problem. In: GECCO, pp. 681–689. ACM (2020)
[7]
Do, A.V., Guo, M., Neumann, A., Neumann, F.: Analysis of evolutionary diversity optimisation for permutation problems. In: GECCO, pp. 574–582. ACM (2021)
[8]
Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: applying the 1/5-th rule in discrete settings. In: GECCO Companion, pp. 1335–1342 (2015)
[9]
Gao W, Nallaperuma S, and Neumann F Feature-based diversity optimization for problem instance classification Evol. Comput. 2021 29 1 107-128
[10]
Lehman J and Stanley KO Abandoning objectives: evolution through the search for novelty alone Evol. Comput. 2011 19 2 189-223
[11]
Nagata Y and Kobayashi S A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem INFORMS J. Comput. 2013 25 2 346-363
[12]
Neumann, A., Antipov, D., Neumann, F.: Coevolutionary Pareto diversity optimization. CoRR arXiv:2204.05457 (2022), accepted as full paper at GECCO 2022
[13]
Neumann, A., Bossek, J., Neumann, F.: Diversifying greedy sampling and evolutionary diversity optimisation for constrained monotone submodular functions. In: GECCO, pp. 261–269. ACM (2021)
[14]
Neumann, A., Gao, W., Doerr, C., Neumann, F., Wagner, M.: Discrepancy-based evolutionary diversity optimization. In: GECCO, pp. 991–998. ACM (2018)
[15]
Neumann, A., Gao, W., Wagner, M., Neumann, F.: Evolutionary diversity optimization using multi-objective indicators. In: GECCO, pp. 837–845. ACM (2019)
[16]
Neumann, A., Szpak, Z.L., Chojnacki, W., Neumann, F.: Evolutionary image composition using feature covariance matrices. In: GECCO, pp. 817–824 (2017)
[17]
Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Computing diverse sets of high quality TSP tours by EAX-based evolutionary diversity optimisation. In: FOGA, pp. 9:1–9:11. ACM (2021)
[18]
Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Entropy-based evolutionary diversity optimisation for the traveling salesperson problem. In: GECCO, pp. 600–608. ACM (2021)
[19]
Nikfarjam, A., Neumann, A., Neumann, F.: On the use of quality diversity algorithms for the traveling thief problem. CoRR abs/2112.08627 (2021)
[20]
Nikfarjam, A., Neumann, A., Neumann, F.: Evolutionary diversity optimisation for the traveling thief problem. CoRR abs/2204.02709 (2022)
[21]
Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A comprehensive benchmark set and heuristics for the traveling thief problem. In: GECCO, pp. 477–484. ACM (2014)
[22]
Pugh JK, Soros LB, and Stanley KO Quality diversity: a new frontier for evolutionary computation Front. Robot. AI 2016 3 40
[23]
Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of quality diversity. In: GECCO, pp. 967–974. ACM (2015)
[24]
Toth P Dynamic programming algorithms for the zero-one knapsack problem Computing 1980 25 1 29-45
[25]
Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimization. In: GECCO, pp. 641–648. ACM (2011)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Parallel Problem Solving from Nature – PPSN XVII: 17th International Conference, PPSN 2022, Dortmund, Germany, September 10–14, 2022, Proceedings, Part I
Sep 2022
631 pages
ISBN:978-3-031-14713-5
DOI:10.1007/978-3-031-14714-2

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 10 September 2022

Author Tags

  1. Quality diversity
  2. Co-evolutionary algorithms
  3. Evolutionary diversity optimisation
  4. Traveling thief problem

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media