Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-73480-9_26guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Optimising Region of Interest Registration for Multiple-Tissue Whole Slide Images

Published: 06 October 2024 Publication History

Abstract

Digital pathology transforms clinical workflows by enabling the analysis of whole slide images (WSIs) on computers. While most methods focus on haematoxylin and eosin (H&E) stained WSIs, immunohistochemistry (IHC) is crucial for biomarker analysis, particularly for assessing tumour-infiltrating lymphocyte (TIL) subtypes inside a region of interest (ROI) selected by a pathologist using Salgado’s criteria. This study first investigates the naive approach, which verifies a state-of-the-art WSI registration method’s robustness for registering single-tissue H&E and multiple-tissue IHC WSIs. Then, to simplify this first attempt by accomplishing registration between single tissues, the study proposes two approaches: splitting the multiple-tissue IHC WSIs, which is considered the baseline, and a virtualised splitting with an incremental resolution optimisation-based technique. ROI registration predictions for TIL assessment will be assessed on IHC WSIs using standard metrics and one derived from a standard landmark-based metric popular in the image registration field. Existing image detection-inspired metrics for evaluating ROI proposals will be proposed and tuned to consider the global viewpoint, where the ROI proposals lie. This study aims to establish a reliable and time-efficient ROI registration procedure for WSIs with multiple stained tissues. This method would enable efficient selection of the ROI from the H&E WSI and potentially reduce the need for pathologist intervention through automatic quality control.

References

[1]
Weitz, P., Valkonen, M., Solorzano, L., Carr, C., Kartasalo, K., Boissin, C., Koivukoski, S., Kuusela, A., Rasic, D., Feng, Y., et al.: The ACROBAT 2022 challenge: automatic registration of breast cancer tissue. arXiv preprint arXiv:2305.18033 (2023)
[2]
Nam, S., Chong, Y., Jung, C.K., Kwak, T.Y., Lee, J.Y., Park, J., Rho, M.J., Go, H.: Introduction to digital pathology and computer-aided pathology. Journal of pathology and translational medicine 54(2),  125 (2020)
[3]
Baxi, V., Edwards, R., Montalto, M., Saha, S.: Digital pathology and artificial intelligence in translational medicine and clinical practice. Modern Pathology 35(1), 23–32 (2022)
[4]
Salgado, R., Denkert, C., Demaria, S., Sirtaine, N., Klauschen, F., Pruneri, G., Wienert, S., Van den Eynden, G., Baehner, F.L., Pénault-Llorca, F., et al.: The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Annals of oncology 26(2), 259–271 (2015)
[5]
Fortis, S.P., Sofopoulos, M., Sotiriadou, N.N., Haritos, C., Vaxevanis, C.K., Anastasopoulou, E.A., Janssen, N., Arnogiannaki, N., Ardavanis, A., Pawelec, G., et al.: Differential intratumoral distributions of CD8 and CD163 immune cells as prognostic biomarkers in breast cancer. Journal for immunotherapy of cancer 5, 1–12 (2017)
[6]
Fiorin, A., López Pablo, C., Lejeune, M., Hamza Siraj, A., Della Mea, V.: Enhancing AI Research for Breast Cancer: A Comprehensive Review of Tumor-Infiltrating Lymphocyte Datasets. Journal of Imaging Informatics in Medicine pp. 1–13 (2024)
[7]
Smit, G., Ciompi, F., Cigéhn, M., Bodén, A., Van Der Laak, J., Mercan, C.: Quality control of whole-slide images through multi-class semantic segmentation of artifacts. In: Medical Imaging with Deep Learning (2021)
[8]
Schömig-Markiefka, B., Pryalukhin, A., Hulla, W., Bychkov, A., Fukuoka, J., Madabhushi, A., Achter, V., Nieroda, L., Büttner, R., Quaas, A., et al.: Quality control stress test for deep learning-based diagnostic model in digital pathology. Modern Pathology 34(12), 2098–2108 (2021)
[9]
Schreiber, B., Denholm, J., Jaeckle, F., Arends, M.J., Branson, K., Schönlieb, C.B., Soilleux, E.: Rapid artefact removal and H &E-stained tissue segmentation. Scientific Reports 14(1),  309 (2024)
[10]
Gatenbee, C.D., Baker, A.M., Prabhakaran, S., Swinyard, O., Slebos, R.J., Mandal, G., Mulholland, E., Andor, N., Marusyk, A., Leedham, S., et al.: Virtual alignment of pathology image series for multi-gigapixel whole slide images. Nature communications 14(1),  4502 (2023)
[11]
Weitz, P., Valkonen, M., Solorzano, L., Carr, C., Kartasalo, K., Boissin, C., Koivukoski, S., Kuusela, A., Rasic, D., Feng, Y., et al.: ACROBAT–a multi-stain breast cancer histological whole-slide-image data set from routine diagnostics for computational pathology. arXiv preprint arXiv:2211.13621 (2022)
[12]
Borovec, J., Kybic, J., Arganda-Carreras, I., Sorokin, D.V., Bueno, G., Khvostikov, A.V., Bakas, S., Eric, I., Chang, C., Heldmann, S., et al.: ANHIR: automatic non-rigid histological image registration challenge. IEEE transactions on medical imaging 39(10), 3042–3052 (2020)
[13]
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 658–666 (2019)
[14]
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: Faster and better learning for bounding box regression. In: Proceedings of the AAAI conference on artificial intelligence. vol. 34, pp. 12993–13000 (2020)
[15]
Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., et al.: QuPath: Open source software for digital pathology image analysis. Scientific reports 7(1),  1–7 (2017)
[16]
Leutenegger, S., Chli, M., Siegwart, R.Y.: Brisk: Binary robust invariant scalable keypoints. In: 2011 International Conference on Computer Vision. pp. 2548–2555 (2011).
[17]
Simonyan, K., Vedaldi, A., Zisserman, A.: Learning local feature descriptors using convex optimisation. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(8), 1573–1585 (2014).
[18]
Cantzler, H.: Random sample consensus (ransac). Institute for Perception, Action and Behaviour, Division of Informatics, University of Edinburgh 3 (1981)

Index Terms

  1. Optimising Region of Interest Registration for Multiple-Tissue Whole Slide Images
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Guide Proceedings
            Biomedical Image Registration: 11th International Workshop, WBIR 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings
            Oct 2024
            377 pages
            ISBN:978-3-031-73479-3
            DOI:10.1007/978-3-031-73480-9
            • Editors:
            • Marc Modat,
            • Ivor Simpson,
            • Žiga Špiclin,
            • Wietske Bastiaansen,
            • Alessa Hering,
            • Tony C. W. Mok

            Publisher

            Springer-Verlag

            Berlin, Heidelberg

            Publication History

            Published: 06 October 2024

            Author Tags

            1. Region of interest
            2. Whole slide image
            3. Registration
            4. Multiple tissues
            5. Tumour-infiltrating lymphocyte

            Qualifiers

            • Article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 09 Jan 2025

            Other Metrics

            Citations

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media