Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-72378-0_57guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Follow Sonographers’ Visual Scan-Path: Adjusting CNN Model for Diagnosing Gout from Musculoskeletal Ultrasound

Published: 07 October 2024 Publication History

Abstract

The current models for automatic gout diagnosis train convolutional neural network (CNN) using musculoskeletal ultrasound (MSKUS) images paired with classification labels, which are annotated by experience sonographers. However, this prevalent diagnostic model overlooks valuable supplementary information derived from sonographers’ annotations, such as the visual scan-path followed by sonographers. We notice that this annotation procedure offers valuable insight into human attention, aiding the CNN model in focusing on crucial features in gouty MSKUS scans, including the double contour sign, tophus, and snowstorm, which play a crucial role in sonographers’ diagnostic decisions. To verify this, we create a gout MSKUS dataset that enriched with sonographers’ annotation byproduct visual scan-path. Furthermore, we introduce a scan-path based fine-tuning training mechanism (SFT) for gout diagnosis models, leveraging the annotation byproduct scan-paths for enhanced learning. The experimental results demonstrate the superiority of our SFT method over several SOTA CNNs.

References

[1]
Alsharid M, Cai Y, Sharma H, Drukker L, Papageorghiou AT, and Noble JA Gaze-assisted automatic captioning of fetal ultrasound videos using three-way multi-modal deep neural networks Med. Image Anal. 2022 82
[2]
Baumgartner CF et al. SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound IEEE Trans. Med. Imaging 2017 36 11 2204-2215
[3]
Bylinskii Z, Judd T, Oliva A, Torralba A, and Durand F What do different evaluation metrics tell us about saliency models? IEEE Trans. Pattern Anal. Mach. Intell. 2018 41 3 740-757
[4]
Cai, Y., Sharma, H., Chatelain, P., Noble, J.A.: SonoEyeNet: standardized fetal ultrasound plane detection informed by eye tracking. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1475–1478. IEEE (2018)
[5]
Cao, L., Yang, D., Wang, Q., Yu, Y., Wang, J., Rundensteiner, E.A.: Scalable distance-based outlier detection over high-volume data streams. In: 2014 IEEE 30th International Conference on Data Engineering, pp. 76–87 (2014).
[6]
Cao Z, et al., et al. Greenspan H, et al., et al. Thinking like sonographers: a deep CNN model for diagnosing gout from musculoskeletal ultrasound MICCAI 2023 2023 Cham Springer 159-168
[7]
Han S et al. A deep learning framework for supporting the classification of breast lesions in ultrasound images Phys. Med. Biol. 2017 62 19 7714
[8]
Karargyris A et al. Creation and validation of a chest X-ray dataset with eye-tracking and report dictation for AI development Sci. Data 2021 8 1 92
[9]
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
[10]
Thiele, R., Schlesinger, N.: Diagnosis of gout by ultrasound (2007)
[11]
Voisin, S., Pinto, F., Xu, S., Morin-Ducote, G., Hudson, K., Tourassi, G.D.: Investigating the association of eye gaze pattern and diagnostic error in mammography. In: Medical Imaging 2013: Image Perception, Observer Performance, and Technology Assessment, vol. 8673, p. 867302. SPIE (2013)
[12]
Wang S, Ouyang X, Liu T, Wang Q, and Shen D Follow my eye: using gaze to supervise computer-aided diagnosis IEEE Trans. Med. Imaging 2022 41 7 1688-1698
[13]
Zhang Q, Gao F, Sun W, Ma J, Cheng L, and Li Z The diagnostic performance of musculoskeletal ultrasound in gout: a systematic review and meta-analysis PLoS ONE 2018 13 7
[14]
Zhuang Z, Yang Z, Raj ANJ, Wei C, Jin P, and Zhuang S Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion Comput. Methods Programs Biomed. 2021 208

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024: 27th International Conference, Marrakesh, Morocco, October 6–10, 2024, Proceedings, Part I
Oct 2024
822 pages
ISBN:978-3-031-72377-3
DOI:10.1007/978-3-031-72378-0
  • Editors:
  • Marius George Linguraru,
  • Qi Dou,
  • Aasa Feragen,
  • Stamatia Giannarou,
  • Ben Glocker,
  • Karim Lekadir,
  • Julia A. Schnabel

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 07 October 2024

Author Tags

  1. Musculoskeletal ultrasound
  2. Gout diagnosis
  3. Visual scan-path

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media