Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-72111-3_60guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

SimTxtSeg: Weakly-Supervised Medical Image Segmentation with Simple Text Cues

Published: 07 October 2024 Publication History

Abstract

Weakly-supervised medical image segmentation is a challenging task that aims to reduce the annotation cost while keep the segmentation performance. In this paper, we present a novel framework, SimTxtSeg, that leverages simple text cues to generate high-quality pseudo-labels and study the cross-modal fusion in training segmentation models, simultaneously. Our contribution consists of two key components: an effective Textual-to-Visual Cue Converter that produces visual prompts from text prompts on medical images, and a text-guided segmentation model with Text-Vision Hybrid Attention that fuses text and image features. We evaluate our framework on two medical image segmentation tasks: colonic polyp segmentation and MRI brain tumor segmentation, and achieve consistent state-of-the-art performance. Source code is available at: https://github.com/xyx1024/SimTxtSeg.

References

[1]
Ali S et al. A multi-centre polyp detection and segmentation dataset for generalisability assessment Sci. Data 2023 10 1 75
[2]
Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-Dova maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graphics 43, 99–111 (2015)
[3]
Buda M, Saha A, and Mazurowski MA Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm Comput. Biol. Med. 2019 109 218-225
[4]
Deng G, Zou K, Ren K, Wang M, Yuan X, Ying S, Fu H, et al. Woo J et al. SAM-U: multi-box prompts triggered uncertainty estimation for reliable SAM in medical image MICCAI 2023 2023 Cham Springer 368-377
[5]
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
[6]
Diakogiannis FI, Waldner F, Caccetta P, and Wu C Resunet-a: a deep learning framework for semantic segmentation of remotely sensed data ISPRS J. Photogramm. Remote. Sens. 2020 162 94-114
[7]
Fan D-P, et al., et al. Martel AL, et al., et al. PraNet: parallel reverse attention network for polyp segmentation Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 2020 Cham Springer 263-273
[8]
Gama, P.H., Oliveira, H., dos Santos, J.A.: Learning to segment medical images from few-shot sparse labels. In: 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 89–96. IEEE (2021)
[9]
Gröger, M., Borisov, V., Kasneci, G.: Boxshrink: From bounding boxes to segmentation masks. In: Workshop on Medical Image Learning with Limited and Noisy Data. pp. 65–75. Springer (2022)
[10]
Hu, X., Chen, Y.J., Ho, T.Y., Shi, Y.: Conditional diffusion models for weakly supervised medical image segmentation. arXiv preprint arXiv:2306.03878 (2023)
[11]
Jha D, et al., et al. Ro YM, et al., et al. Kvasir-SEG: a segmented polyp dataset MultiMedia Modeling 2020 Cham Springer 451-462
[12]
Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)
[13]
Lei, W., Wei, X., Zhang, X., Li, K., Zhang, S.: Medlsam: localize and segment anything model for 3d medical images. arXiv preprint arXiv:2306.14752 (2023)
[14]
Li, Z., Zheng, Y., Luo, X., Shan, D., Hong, Q.: Scribblevc: scribble-supervised medical image segmentation with vision-class embedding (2023)
[15]
Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu, J., et al.: Grounding dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499 (2023)
[16]
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
[17]
Ma J, He Y, Li F, Han L, You C, and Wang B Segment anything in medical images Nat. Commun. 2024 15 1 654
[18]
MMDetection Contributors: OpenMMLab Detection Toolbox and Benchmark (2018). https://github.com/open-mmlab/mmdetection
[19]
Roth HR, Yang D, Xu Z, Wang X, and Xu D Going to extremes: weakly supervised medical image segmentation Machine Learn. Knowl. Extraction 2021 3 2 507-524
[20]
Silva J, Histace A, Romain O, Dray X, and Granado B Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer Int. J. Comput. Assist. Radiol. Surg. 2014 9 283-293
[21]
Tajbakhsh N, Gurudu SR, and Liang J Automated polyp detection in colonoscopy videos using shape and context information IEEE Trans. Med. Imaging 2015 35 2 630-644
[22]
Wang, A., Xu, M., Zhang, Y., Islam, M., Ren, H.: S2me: spatial-spectral mutual teaching and ensemble learning for scribble-supervised polyp segmentation. arXiv preprint arXiv:2306.00451 (2023)
[23]
Wang, C., Zhang, D., Yan, R.: Boosting weakly-supervised image segmentation via representation, transform, and compensator. arXiv preprint arXiv:2309.00871 (2023)
[24]
Wang R, Lei T, Cui R, Zhang B, Meng H, and Nandi AK Medical image segmentation using deep learning: a survey IET Image Proc. 2022 16 5 1243-1267
[25]
Wang Z, Voiculescu I, et al. Bhattarai B et al. Weakly supervised medical image segmentation through dense combinations of dense pseudo-labels DEMI 2023 2023 Cham Springer 1-10
[26]
Wei J, Hu Y, Cui S, Zhou SK, Li Z, et al. Greenspan H et al. Weakpolyp: You only look bounding box for polyp segmentation MICCAI 2023 2023 Cham Springer 757-766
[27]
Wei J, Hu Y, Li G, Cui S, Kevin Zhou S, and Li Z Wang L, Dou Q, Fletcher PT, Speidel S, and Li S Boxpolyp: boost generalized polyp segmentation using extra coarse bounding box annotations MICCAI 2022 2022 Cham Springer 67-77
[28]
Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon, I.S., Xie, S.: Convnext v2: co-designing and scaling convnets with masked autoencoders. In: CVPR, pp. 16133–16142 (2023)
[29]
Xie X, Fan H, Yu Z, Bai H, Tang Y, et al. Liu H et al. Weakly-supervised medical image segmentation based on multi-task learning ICIRA 2022 2022 Cham Springer 395-404
[30]
Xu, Y., Gong, M., Xie, S., Batmanghelich, K.: Box-adapt: Domain-adaptive medical image segmentation using bounding boxsupervision (2021)
[31]
Ye, J., et al.: Sa-med2d-20m dataset: segment anything in 2D medical imaging with 20 million masks. arXiv preprint arXiv:2311.11969 (2023)
[32]
Zhong Y, Xu M, Liang K, Chen K, Wu M, et al. Greenspan H et al. Ariadne’s thread: using text prompts to improve segmentation of infected areas from chest x-ray images MICCAI 2023 2023 Cham Springer 724-733

Index Terms

  1. SimTxtSeg: Weakly-Supervised Medical Image Segmentation with Simple Text Cues
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    Medical Image Computing and Computer Assisted Intervention – MICCAI 2024: 27th International Conference, Marrakesh, Morocco, October 6–10, 2024, Proceedings, Part VIII
    Oct 2024
    801 pages
    ISBN:978-3-031-72110-6
    DOI:10.1007/978-3-031-72111-3
    • Editors:
    • Marius George Linguraru,
    • Qi Dou,
    • Aasa Feragen,
    • Stamatia Giannarou,
    • Ben Glocker,
    • Karim Lekadir,
    • Julia A. Schnabel

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 07 October 2024

    Author Tags

    1. Weakly-supervised medical image segmentation
    2. Textual-to-visual cue converter
    3. Text-vision hybrid attention

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media