Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-68323-7_22guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Creating and Querying Data Cubes in Python Using PyCube

Published: 26 August 2024 Publication History

Abstract

Data cubes are used for analyzing large data sets usually contained in data warehouses. The most popular data cube tools use graphical user interfaces (GUI) to do the data analysis. Traditionally this was necessary since data analysts were not expected to be technical people. However, in the subsequent decades the data landscape changed dramatically requiring companies to employ large teams of highly technical data scientists in order to manage and use the ever increasing amount of data. These data scientists generally use tools like Python, interactive notebooks, pandas, etc. while modern data cube tools are still GUI based. To bridge this gap, this paper proposes a Python-based data cube tool called pyCube. pyCube is able to semi-automatically create data cubes for data stored in an RDBMS and manages the data cube metadata. pyCube’s programmatic interface enables data scientists to query data cubes by specifying the metadata of the desired result. pyCube is experimentally evaluated on Star Schema Benchmark (SSB). The results show that pyCube vastly outperforms different implementations of SSB queries in pandas in both runtime and memory while being easier to read and write.

References

[1]
ActiveViam: atoti’s. https://atoti.io. Accessed 15 Sept 2023
[2]
de Aguiar Ciferri CD et al. Cube algebra: a generic user-centric model and query language for OLAP cubes Int. J. Data Warehous. Min. 2013 9 2 39-65
[3]
Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: Sellis, T.K., Davidson, S.B., Ives, Z.G. (eds.) Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1383–1394. ACM (2015).
[4]
Bayer, M.: Sqlalchemy. In: Brown, A., Wilson, G. (eds.) The Architecture of Open Source Applications Volume II: Structure, Scale, and a Few More Fearless Hacks. aosabook.org (2012). http://aosabook.org/en/sqlalchemy.html
[5]
Cube: Cube’s. https://cube.dev/. Accessed 15 Sept 2023
[6]
Databrewery: Databrewery’s cubes. http://cubes.databrewery.org/. Accessed 15 Sept 2023
[7]
Kim H, So B, Han W, and Lee H Natural language to SQL: where are we today? Proc. VLDB Endow. 2020 13 10 1737-1750
[8]
Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd. edn. Wiley, Hoboken (2002). https://www.worldcat.org/oclc/49284159
[9]
Ma, P., Wang, S.: MT-Teql: evaluating and augmenting neural NLIDB on real-world linguistic and schema variations. Proc. VLDB Endow. 15(3), 569–582 (2021). http://www.vldb.org/pvldb/vol15/p569-ma.pdf
[11]
O’Neil PE, O’Neil EJ, and Chen X The star schema benchmark (SSB) Pat 2007 200 50
[12]
Pandas: Pandas user guide. https://pandas.pydata.org/docs/user_guide/index.html. Accessed 01 Oct 2023
[13]
SAS, A.: Olapy’s documentation. https://olapy.readthedocs.io/en/latest/. Accessed 17 Mar 2024
[14]
Team pandas development: pandas-dev/pandas: Pandas (2020).
[15]
TinyOlap: Tinyolap. https://tinyolap.com/. Accessed 18 Mar 2024
[16]
Vang, S., Thomsen, C., Pedersen, T.B.: Creating and querying data cubes in python using pyCube. Technical report (2023).
[17]
Vassiliadis P, Marcel P, and Rizzi S Beyond roll-up’s and drill-down’s: an intentional analytics model to reinvent OLAP Inf. Syst. 2019 85 68-91
[18]
Whitehorn M, Zare R, and Pasumansky M Fast track to MDX 2006 2 Cham Springer

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Big Data Analytics and Knowledge Discovery: 26th International Conference, DaWaK 2024, Naples, Italy, August 26–28, 2024, Proceedings
Aug 2024
408 pages
ISBN:978-3-031-68322-0
DOI:10.1007/978-3-031-68323-7
  • Editors:
  • Robert Wrembel,
  • Silvia Chiusano,
  • Gabriele Kotsis,
  • A Min Tjoa,
  • Ismail Khalil

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 26 August 2024

Author Tags

  1. Data cubes
  2. Python
  3. OLAP

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media