Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-65112-0_8guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Provable Repair of Vision Transformers

Published: 22 July 2024 Publication History

Abstract

Vision Transformers have emerged as state-of-the-art image recognition tools, but may still exhibit incorrect behavior. Incorrect image recognition can have disastrous consequences in safety-critical real-world applications such as self-driving automobiles. In this paper, we present Provable Repair of Vision Transformers (PRoViT), a provable repair approach that guarantees the correct classification of images in a repair set for a given Vision Transformer without modifying its architecture. PRoViT avoids negatively affecting correctly classified images (drawdown) by minimizing the changes made to the Vision Transformer’s parameters and original output. We observe that for Vision Transformers, unlike for other architectures such as ResNet or VGG, editing just the parameters in the last layer achieves correctness guarantees and very low drawdown. We introduce a novel method for editing these last-layer parameters that enables PRoViT to efficiently repair state-of-the-art Vision Transformers for thousands of images, far exceeding the capabilities of prior provable repair approaches.

References

[1]
Balunovic, M., Vechev, M.: Adversarial training and provable defenses: bridging the gap. In: International Conference on Learning Representations (2019)
[2]
Bojarski, M., et al.: End to end learning for self-driving cars. CoRR abs/1604.07316 (2016). http://arxiv.org/abs/1604.07316
[3]
Bonaert, G., Dimitrov, D.I., Baader, M., Vechev, M.: Fast and precise certification of transformers. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. PLDI 2021, pp. 466–481. Association for Computing Machinery, New York, NY, USA (2021).
[4]
Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., Li, F.F.: Imagenet large scale visual recognition challenge 2012 (ilsvrc2012) (2012). https://www.image-net.org/challenges/LSVRC/2012/
[5]
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YicbFdNTTy
[6]
Fu, F., Li, W.: Sound and complete neural network repair with minimality and locality guarantees. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=xS8AMYiEav3
[7]
Goldberger, B., Katz, G., Adi, Y., Keshet, J.: Minimal modifications of deep neural networks using verification. In: LPAR, vol. 2020, p. 23 (2020)
[8]
Gonzales, R.: Feds say self-driving Uber SUV did not recognize jaywalking pedestrian in fatal crash. NPR (2019). https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal-. Accessed 16 Nov 2023
[9]
Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://www.gurobi.com
[10]
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
[11]
Hendrycks, D., Dietterich, T.G.: Benchmarking neural network robustness to common corruptions and surface variations. arXiv preprint arXiv:1807.01697 (2018)
[12]
Huang, Z., Shen, Y., Zhang, X., Zhou, J., Rong, W., Xiong, Z.: Transformer-patcher: one mistake worth one neuron. In: The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, 1–5 May 2023. OpenReview.net (2023). https://openreview.net/pdf?id=4oYUGeGBPm
[13]
Kemker, R., McClure, M., Abitino, A., Hayes, T.L., Kanan, C.: Measuring catastrophic forgetting in neural networks. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 3390–3398. AAAI Press (2018).
[14]
Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5) (2018)., http://www.sciencedirect.com/science/article/pii/S0092867418301545
[15]
Lee, D.: US opens investigation into Tesla after fatal crash. BBC (2016). https://www.bbc.co.uk/news/technology-36680043. Accessed 16 Nov 2023
[16]
Meng, K., Bau, D., Andonian, A., Belinkov, Y.: Locating and editing factual associations in GPT. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
[17]
Meng, K., Sharma, A.S., Andonian, A.J., Belinkov, Y., Bau, D.: Mass-editing memory in a transformer. In: The Eleventh International Conference on Learning Representations. ICLR 2023, Kigali, Rwanda, 1–5 May 2023. OpenReview.net (2023). https://openreview.net/pdf?id=MkbcAHIYgyS
[18]
Mitchell, E., Lin, C., Bosselut, A., Manning, C.D., Finn, C.: Memory-based model editing at scale. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 15817–15831. PMLR, 17–23 July 2022. https://proceedings.mlr.press/v162/mitchell22a.html
[19]
Müller, M.N., Eckert, F., Fischer, M., Vechev, M.T.: Certified training: small boxes are all you need. In: The Eleventh International Conference on Learning Representations. ICLR 2023, Kigali, Rwanda, 1–5 May 2023. OpenReview.net (2023). https://openreview.net/pdf?id=7oFuxtJtUMH
[20]
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library, pp. 8024–8035 (2019). https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
[21]
Shi, Z., Zhang, H., Chang, K., Huang, M., Hsieh, C.: Robustness verification for transformers. In: 8th International Conference on Learning Representations. ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020). https://openreview.net/forum?id=BJxwPJHFwS
[22]
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations. ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.1556
[23]
Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL), 1–30 (2019)
[24]
Sotoudeh, M., Thakur, A.V.: Correcting deep neural networks with small, generalizing patches. In: NeurIPS 2019 Workshop on Safety and Robustness in Decision Making (2019)
[25]
Sotoudeh, M., Thakur, A.V.: Provable repair of deep neural networks. In: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI). ACM (2021).
[26]
Tao, Z., Nawas, S., Mitchell, J., Thakur, A.V.: Architecture-preserving provable repair of deep neural networks. Proc. ACM Program. Lang. 7(PLDI) (2023).
[27]
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training data-efficient image transformers & distillation through attention. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 10347–10357. PMLR, 18–24 July 2021. https://proceedings.mlr.press/v139/touvron21a.html
[28]
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
AI Verification: First International Symposium, SAIV 2024, Montreal, QC, Canada, July 22–23, 2024, Proceedings
Jul 2024
196 pages
ISBN:978-3-031-65111-3
DOI:10.1007/978-3-031-65112-0
  • Editors:
  • Guy Avni,
  • Mirco Giacobbe,
  • Taylor T. Johnson,
  • Guy Katz,
  • Anna Lukina,
  • Nina Narodytska,
  • Christian Schilling

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 22 July 2024

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media