Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-54534-4_24guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

The Problem of Finding Several Given Diameter Spanning Trees of Maximum Total Weight in a Complete Graph

Published: 12 March 2024 Publication History

Abstract

We consider the following NP-hard problem. Given an undirected complete edge-weighted graph and positive integers m, D, the goal is to find m edge-disjoint spanning trees with diameter D of maximum total weight in complete undirected graph. We propose an O(n2)-time approximation algorithm for the problem, where n is the number of vertices in the input graph. For the case when edge weights are randomly uniformly chosen from the interval (0; 1), we prove sufficient conditions under which the proposed algorithm gives asymptotically optimal solutions.

References

[1]
Angel O, Flaxman AD, and Wilson DB A sharp threshold for minimum bounded-depth and bounded-diameter spanning trees and Steiner trees in random networks Combinatorica 2012 32 1 1-33
[2]
Bala, K., Petropoulos, K., Stern, T.E.: Multicasting in a linear Lightwave network. In: Proceedings of the IEEE INFOCOM 1993, pp. 1350–1358 (1993).
[3]
Bookstein A and Klein ST Compression of correlated bit-vectors Inform. Syst. 1991 16 4 387-400
[4]
Clementi, A.E.F., Ianni, M.D., Monti, A., Rossi, G., Silvestri, R.: Experimental analysis of practically efficient algorithms for bounded-hop accumulation in ad-hoc wireless networks. In: Proceedings of the 19th IEEE International Parallel Distributed Processing Symposium (IPDPS 2005), pp. 8–16 (2005).
[5]
Cooper C, Frieze A, Ince N, Janson S, and Spencer J On the length of a random minimum spanning tree Comb. Probab. Comput. 2016 25 1 89-107
[6]
Erzin AI The problem of constructing a spanning tree of maximal weight with a bounded radius Upravlyaemye Sistemy, iss. 1987 27 70-78 (in Russian)
[7]
Frieze A On the value of a random MST problem Discret. Appl. Math. 1985 10 1 47-56
[8]
Garey, M.R., Johnson, D.S.: Computers and Intractability, p. 340. Freeman, San Francisco (1979)
[9]
Gimadi EK, Glebov NI, and Perepelitsa VA Algorithms with estimates for discrete optimization problems Problemy Kibernetiki, iss. 1975 31 35-42 (in Russian)
[10]
Gimadi, E. K., Istomin, A.M., Shin, E.Y.: On algorithm for the minimum spanning tree problem bounded below. In: Proceedings of the DOOR 2016, Vladivostok, Russia, 19–23 September 2016, CEUR-WS, 1623, pp. 11–17 (2016)
[11]
Gimadi, E.K., Istomin, A.M., Shin, E.Y.: On given diameter MST problem on random instances. In: CEUR Workshop Proceedings, pp. 159–168 (2019)
[12]
Gimadi EK and Serdyukov AI Inderfurth K, Schwödiauer G, Domschke W, Juhnke F, Kleinschmidt P, and Wäscher G A probabilistic analysis of an approximation algorithm for the minimum weight spanning tree problem with bounded from below diameter Operations Research Proceedings 1999 2000 Heidelberg Springer 63-68
[13]
Gimadi, E.K., Shevyakov, A.S., Shin, E.Y.: Asymptotically optimal approach to a given diameter undirected MST problem on random instances. In: Proceedings of 15-th International Asian School-Seminar OPCS-2019, Publisher: IEEE Xplore, pp. 48–52 (2019)
[14]
Gimadi EK and Shtepa AA Asymptotically optimal approach for the maximum spanning tree problem with given diameter in a complete undirected graph on UNI(0; 1)-entries Problems Inform. 2022 57 4 53-62
[15]
Gimadi, E.K., Shtepa, A.A.: On asymptotically optimal approach for finding of the minimum total weight of edge-disjoint spanning trees with a given diameter. Autom. Remote Control, 84(7), 872–888 (2023).
[16]
Nadiradze, G.: Bounded Diameter Minimum Spanning Tree, Master thesis, Central European University (2013)
[17]
Petrov, V.V.: Limit Theorems of Probability Theory. Sequences of Independent Random Variables, p. 304. Clarendon Press, Oxford (1995)
[18]
Raymond K A tree-based algorithm for distributed mutual exclusion ACM Trans. Comput. Syst. 1989 7 1 61-77
[19]
Serdyukov, A.I.: On problem of maximal spanning tree with bounded radius. Diskretn. Anal. Issled. Oper. Ser. 1, 5(3), 64–69 (1998). (in Russian)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Analysis of Images, Social Networks and Texts: 11th International Conference, AIST 2023, Yerevan, Armenia, September 28–30, 2023, Revised Selected Papers
Sep 2023
375 pages
ISBN:978-3-031-54533-7
DOI:10.1007/978-3-031-54534-4
  • Editors:
  • Dmitry I. Ignatov,
  • Michael Khachay,
  • Andrey Kutuzov,
  • Habet Madoyan,
  • Ilya Makarov,
  • Irina Nikishina,
  • Alexander Panchenko,
  • Maxim Panov,
  • Panos M. Pardalos,
  • Andrey V. Savchenko,
  • Evgenii Tsymbalov,
  • Elena Tutubalina,
  • Sergey Zagoruyko

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 12 March 2024

Author Tags

  1. given diameter Spanning Tree Problem
  2. approximation algorithm
  3. probabilistic analysis
  4. asymptotic optimality

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media