Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-030-30796-7_2guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

VLog: A Rule Engine for Knowledge Graphs

Published: 26 October 2019 Publication History

Abstract

Knowledge graphs are crucial assets for tasks like query answering or data integration. These tasks can be viewed as reasoning problems, which in turn require efficient reasoning systems to be implemented. To this end, we present VLog, a rule-based reasoner designed to satisfy the requirements of modern use cases, with a focus on performance and adaptability to different scenarios. We address the former with a novel vertical storage layout, and the latter by abstracting the access to data sources and providing a platform-independent Java API. Features of VLog include fast Datalog materialisation, support for reasoning with existential rules, stratified negation, and data integration from a variety of sources, such as high-performance RDF stores, relational databases, CSV files, OWL ontologies, and remote SPARQL endpoints.

References

[1]
Abiteboul S, Hull R, and Vianu V Foundations of Databases 1994 Boston Addison Wesley
[2]
Alviano M et al. Balduccini M, Janhunen T, et al. The ASP system DLV2 Logic Programming and Nonmonotonic Reasoning 2017 Cham Springer 215-221
[3]
Baget JF, Leclère M, Mugnier ML, and Salvat E On rules with existential variables: walking the decidability line J. Artif. Intell. Res. 2011 175 1620-1654
[4]
Baget J-F, Leclère M, Mugnier M-L, Rocher S, and Sipieter C Bassiliades N, Gottlob G, Sadri F, Paschke A, and Roman D Graal: a toolkit for query answering with existential rules Rule Technologies: Foundations, Tools, and Applications 2015 Cham Springer 328-344
[5]
Bellomarini L, Sallinger E, and Gottlob G The vadalog system: datalog-based reasoning for knowledge graphs J. PVLDB 2018 11 9 975-987
[6]
Benedikt, M., et al.: Benchmarking the chase. In: Proceedings of the 36th Symposium on Principles of Database Systems (PODS) (2017)
[7]
Benedikt M, Leblay J, and Tsamoura E PDQ: proof-driven query answering over web-based data J. PVLDB 2014 7 1553-1556
[8]
Carral, D., Dragoste, I., Krötzsch, M.: Restricted chase (non)termination for existential rules with disjunctions. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI) (2017)
[9]
Carral, D., Dragoste, I., Krötzsch, M.: The combined approach to query answering in Horn-. In: Proceedings of the 16th International Conference on Principles of Knowledge Representation and Reasoning (KR) (2018)
[10]
Carral D, Feier C, Hitzler P, et al. Groth P et al. A practical acyclicity notion for query answering over Horn- ontologies The Semantic Web – ISWC 2016 2016 Cham Springer 70-85
[11]
Carral, D., González, L., Koopmann, P.: From Horn- to datalog: a data-independent transformation that preserves assertion entailment. In: Proceedings of the 33rd Conference on Artificial Intelligence (AAAI) (2019)
[12]
Cuenca Grau B et al. Acyclicity notions for existential rules and their application to query answering in ontologies J. Artif. Intell. Res. 2013 47 741-808
[13]
Fagin R, Kolaitis PG, Miller RJ, and Popa L Data exchange: semantics and query answering J. Theor. Comput. Sci. 2005 336 89-124
[14]
Geerts F, Mecca G, Papotti P, and Santoro D That’s all folks! LLUNATIC goes open source J. PVLDB 2014 7 13 1565-1568
[15]
Glimm B, Horrocks I, Motik B, Stoilos G, and Wang Z HermiT: an OWL 2 reasoner J. Autom. Reason. 2014 53 3 245-269
[16]
Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime: rules to the rescue. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI) (2015)
[17]
Gottlob G, Pieris A, and Sallinger E Calimeri F, Leone N, and Manna M Vadalog: recent advances and applications Logics in Artificial Intelligence 2019 Cham Springer 21-37
[18]
Guo Y, Pan Z, and Heflin J LUBM: a benchmark for OWL knowledge base systems J. Web Semant. 2005 3 158-182
[19]
Horridge M and Bechhofer S The OWL API: a Java API for OWL ontologies J. Semant. Web 2011 2 11-21
[20]
Kazakov, Y.: Consequence-driven reasoning for Horn- ontologies. In: Proceedings of the 21st International Joint Conferences on Artificial Intelligence (IJCAI) (2009)
[21]
Krötzsch, M.: Efficient rule-based inferencing for OWL EL. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI) (2011)
[22]
Krötzsch, M., Maier, F., Krisnadhi, A.A., Hitzler, P.: A better uncle for OWL: nominal schemas for integrating rules and ontologies. In: Proceedings of the 20th International Conference on World Wide Web (WWW) (2011)
[23]
Krötzsch, M., Marx, M., Rudolph, S.: The power of the terminating chase (invited talk). In: Proceedings of the 22nd International Conference on Database Theory (ICDT) (2019)
[24]
Leone N et al. The DLV system for knowledge representation and reasoning J. ACM Trans. Comput. Log. 2006 7 499-562
[25]
Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD) (2006)
[26]
Malyshev S, Krötzsch M, González L, Gonsior J, Bielefeldt A, et al. Vrandečić D et al. Getting the most out of Wikidata: semantic technology usage in Wikipedia’s knowledge graph The Semantic Web – ISWC 2018 2018 Cham Springer 376-394
[27]
Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation of datalog programs in centralised, main-memory RDF systems. In: Proceedings of the 28th Conference on Artificial Intelligence (AAAI) (2014)
[28]
Motik B, Sattler U, and Studer R Query answering for OWL DL with rules J. Web Semant. 2005 3 41-60
[29]
Nenov Y, Piro R, Motik B, Horrocks I, Wu Z, Banerjee J, et al. Arenas M et al. RDFox: a highly-scalable RDF store The Semantic Web - ISWC 2015 2015 Cham Springer 3-20
[30]
Pichler R and Savenkov V Demo: data exchange modeling tool J. PVLDB 2009 2 1606-1609
[31]
Piro R, et al., et al. Groth P, et al., et al. Semantic technologies for data analysis in health care The Semantic Web – ISWC 2016 2016 Cham Springer 400-417
[32]
Potter A, Motik B, Nenov Y, and Horrocks I Dynamic data exchange in distributed RDF stores J. IEEE Trans. Knowl. Data Eng. 2018 30 2312-2325
[33]
Rebele T, Tanon TP, Suchanek F, et al. Vrandečić D et al. Bash datalog: answering datalog queries with unix shell commands The Semantic Web – ISWC 2018 2018 Cham Springer 566-582
[34]
Seo J, Guo S, and Lam MS SociaLite: an efficient graph query language based on datalog J. IEEE Trans. Knowl. Data Eng. 2015 27 1824-1837
[35]
Siow E, Tiropanis T, Hall W, et al. Groth P et al. SPARQL-to-SQL on internet of things databases and streams The Semantic Web – ISWC 2016 2016 Cham Springer 515-531
[36]
Steigmiller A, Liebig T, and Glimm B Konclude: system description J. Web Semant. 2014 27 78-85
[37]
Urbani, J., Jacobs, C., Krötzsch, M.: Column-oriented datalog materialization for large knowledge graphs. In: Proceedings of the 30th Conference on Artificial Intelligence (AAAI) (2016)
[38]
Urbani J, Krötzsch M, Jacobs C, Dragoste I, and Carral D Galmiche D, Schulz S, and Sebastiani R Efficient model construction for horn logic with VLog: system description Automated Reasoning 2018 Cham Springer 680-688
[39]
Vrandečić D and Krötzsch M Wikidata: a free collaborative knowledge base J. Commun. ACM 2014 57 78-85
[40]
Zhou Y, Cuenca Grau B, Nenov Y, Kaminski M, and Horrocks I PAGOdA: pay-as-you-go ontology query answering using a datalog reasoner J. Artif. Intell. Res. 2015 54 309-367

Cited By

View all

Index Terms

  1. VLog: A Rule Engine for Knowledge Graphs
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    The Semantic Web – ISWC 2019: 18th International Semantic Web Conference, Auckland, New Zealand, October 26–30, 2019, Proceedings, Part II
    Oct 2019
    582 pages
    ISBN:978-3-030-30795-0
    DOI:10.1007/978-3-030-30796-7

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 26 October 2019

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Enhancing datalog reasoning with hypertree decompositionsProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/377(3383-3393)Online publication date: 19-Aug-2023
    • (2023)Scalable Reasoning on Document Stores via Instance-Aware Query RewritingProceedings of the VLDB Endowment10.14778/3611479.361148116:11(2699-2713)Online publication date: 24-Aug-2023
    • (2023)Notation3 as an Existential Rule LanguageRules and Reasoning10.1007/978-3-031-45072-3_5(70-85)Online publication date: 18-Sep-2023
    • (2023)SemReasoner - A High-Performance Knowledge Graph Store and Rule-Based ReasonerThe Semantic Web10.1007/978-3-031-33455-9_34(574-590)Online publication date: 28-May-2023
    • (2022)ForBackBenchProceedings of the VLDB Endowment10.14778/3529337.352933815:8(1519-1532)Online publication date: 22-Jun-2022
    • (2022)An Existential Rule Framework for Computing Why-Provenance On-Demand for DatalogRules and Reasoning10.1007/978-3-031-21541-4_10(146-163)Online publication date: 26-Sep-2022
    • (2022)Efficient Dependency Analysis for Rule-Based OntologiesThe Semantic Web – ISWC 202210.1007/978-3-031-19433-7_16(267-283)Online publication date: 23-Oct-2022
    • (2022)Ensemble-Based Fact Classification with Knowledge Graph EmbeddingsThe Semantic Web10.1007/978-3-031-06981-9_9(147-164)Online publication date: 29-May-2022
    • (2021)A Datalog Hammer for Supervisor Verification Conditions Modulo Simple Linear ArithmeticFrontiers of Combining Systems10.1007/978-3-030-86205-3_1(3-24)Online publication date: 8-Sep-2021
    • (2020)A Framework for Sensing Radio Frequency Spectrum Attacks on Medical Delivery Drones2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)10.1109/SMC42975.2020.9283478(408-413)Online publication date: 11-Oct-2020
    • Show More Cited By

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media