Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-030-11726-9_42guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Glioma Segmentation and a Simple Accurate Model for Overall Survival Prediction

Published: 26 January 2019 Publication History

Abstract

Brain tumor segmentation is a challenging task necessary for quantitative tumor analysis and diagnosis. We apply a multi-scale convolutional neural network based on the DeepMedic to segment glioma subvolumes provided in the 2018 MICCAI Brain Tumor Segmentation Challenge. We go on to extract intensity and shape features from the images and cross-validate machine learning models to predict overall survival. Using only the mean FLAIR intensity, nonenhancing tumor volume, and patient age we are able to predict patient overall survival with reasonable accuracy.

References

[1]
Stupp, R., et al.: The European organisation for research and treatment of cancer brain tumor and radiotherapy groups, and “the national cancer institute of canada clinical trials group”. radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005)
[2]
Shipitsin M et al. Molecular definition of breast tumor heterogeneity Cancer cell 2007 11 3 259-273
[3]
Ronneberger O, Fischer P, and Brox T Navab N, Hornegger J, Wells WM, and Frangi AF U-Net: convolutional networks for biomedical image segmentation Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015 2015 Cham Springer 234-241
[4]
Menze BH et al. The multimodal brain tumor image segmentation benchmark (BRATS) IEEE Trans. Med. Imaging 2015 34 10 1993-2024
[5]
Bakas S et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features Sci. Data 2017 4 170117
[6]
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, The Cancer Imaging Archive (2017).
[7]
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection, The Cancer Imaging Archive (2017).
[8]
Bakas, S., Reyes, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)
[9]
Kamnitsas K et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation Med. Image Anal. 2017 36 61-78
[10]
Leung Kelvin K., Clarkson Matthew J., Bartlett Jonathan W., Clegg Shona, Jack Clifford R., Weiner Michael W., Fox Nick C., and Ourselin Sébastien Robust atrophy rate measurement in Alzheimer's disease using multi-site serial MRI: Tissue-specific intensity normalization and parameter selection NeuroImage 2010 50 2 516-523
[11]
van Griethuysen Joost J.M., Fedorov Andriy, Parmar Chintan, Hosny Ahmed, Aucoin Nicole, Narayan Vivek, Beets-Tan Regina G.H., Fillion-Robin Jean-Christophe, Pieper Steve, and Aerts Hugo J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype Cancer Research 2017 77 21 e104-e107
[12]
Haralick, R., Shanmugan, K., Dinstein, I.: Textural features for image classification (1973)
[13]
Akaike H A new look at the statistical model identification IEEE Trans. Autom. Control 1974 19 6 716-723
[14]
Kursa MB, Rudnicki WR, et al. Feature selection with the Boruta package J. Stat. Softw. 2010 36 11 1-13
[15]
Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. CoRR, abs/1711.01468 (2017)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II
Sep 2018
538 pages
ISBN:978-3-030-11725-2
DOI:10.1007/978-3-030-11726-9

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 26 January 2019

Author Tags

  1. Glioblastoma
  2. Segmentation
  3. Neural network
  4. Quantitative imaging

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media