Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-981-97-8858-3_8guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Cross-Domain Attention Alignment for Domain Adaptive Person re-ID

Published: 03 November 2024 Publication History

Abstract

Domain adaptive person re-identification (re-ID) aims to re-identify persons across domains with distinct distributions. The key to this task lies in how to effectively mitigate the domain gap between source and target domain. We observe that the attention of a network, which is crucial for identifying a person, may shift from source to target. Previous works don’t explicitly model and mitigate the shift of attention mechanism, largely constraining the re-ID performance. To address this issue, we propose to align the attention mechanism across domains to reduce the domain gap and facilitate the person re-ID. Specifically, we assume that the discriminative parts of a person should be consistent across domains with different styles. We firstly adopt CycleGAN to acquire paired images with different domain styles. Then we minimize the distance of attention maps across domains to rectify the attention shift. Extensive experiments demonstrate that our method performs favorably against previous state-of-the-arts.

References

[1]
Zhang, Z., Lan, C., Zeng, W., Jin, X., Chen, Z.: Relation-aware global attention for person re-identification. In: CVPR, pp. 3186–3195 (2020)
[2]
Luo H, Jiang W, Youzhi G, Liu F, Liao X, Lai S, and Jianyang G A strong baseline and batch normalization neck for deep person re-identification IEEE TMM 2019 22 10 2597-2609
[3]
Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: CVPR, pp. 994–1003 (2018)
[4]
Huang, Y., Wu, Q., Xu, J., Zhong, Y.: SBSGAN: suppression of inter-domain background shift for person re-identification. In: ICCV, pp. 9527–9536 (2019)
[5]
Lin, S., Li, H., Li, C.T., Kot, A.C.: Multi-task mid-level feature alignment network for unsupervised cross-dataset person re-identification. In: BMVC (2018)
[6]
Wang, J., Zhu, X., Gong, S., Li, W.: Transferable joint attribute-identity deep learning for unsupervised person re-identification. In: CVPR, pp. 2275–2284 (2018)
[7]
Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML, pp. 97–105. PMLR (2015)
[8]
Dai, Y., Liu, J., Sun, Y., Tong, Z., Zhang, C., Duan, L.Y.: IDM: an intermediate domain module for domain adaptive person re-id. In: ICCV, pp. 11864–11874 (2021)
[9]
Luo, C., Song, C., Zhang, Z.: Generalizing person re-identification by camera-aware invariance learning and cross-domain mixup. In: ECCV, pp. 224–241. Springer, Berlin (2020)
[10]
Zhang X, Ma J, Liu H, Hai-Miao H, and Yang P Dual attentional Siamese network for visual tracking Displays 2022 74
[11]
Zhang X, Dou X, Zhao X, Li G, and Wang Z Instance-aware diversity feature generation for unsupervised person re-identification Displays 2024 83
[12]
Kang, G., Zheng, L., Yan, Y., Yang, Y.: Deep adversarial attention alignment for unsupervised domain adaptation: the benefit of target expectation maximization. In: ECCV, pp. 401–416 (2018)
[13]
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. NeurIPS 29 (2016)
[14]
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML, pp. 2208–2217. PMLR (2017)
[15]
Sun, B., Saenko, K.: Deep coral: correlation alignment for deep domain adaptation. In: ECCV, pp. 443–450. Springer, Berlin (2016)
[16]
Chen, C., Zhihang, F., Chen, Z., Jin, S., Cheng, Z., Jin, X., Hua, X.-S.: Homm: higher-order moment matching for unsupervised domain adaptation. In: AAAI, vol. 34, pp. 3422–3429 (2020)
[17]
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML, pp. 2208–2217. PMLR (2017)
[18]
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML, pp. 1180–1189. PMLR (2015)
[19]
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR, pp. 7167–7176 (2017)
[20]
Zheng, K., Lan, C., Zeng, W., Zhang, Z., Zha, Z.-J.: Exploiting sample uncertainty for domain adaptive person re-identification. In: AAAI, vol. 35, pp. 3538–3546 (2021)
[21]
Zheng, K., Liu, W., He, L., Mei, T., Luo, J., Zha, Z.J.: Group-aware label transfer for domain adaptive person re-identification. In: CVPR, pp. 5310–5319 (2021)
[22]
Han, J., Li, Y.-L., Wang, S.: Delving into probabilistic uncertainty for unsupervised domain adaptive person re-identification. In: AAAI, vol. 36, pp. 790–798 (2022)
[23]
He, T., Shen, L., Guo, Y., Ding, G., Guo, Z.: Secret: Self-consistent pseudo label refinement for unsupervised domain adaptive person re-identification. In: AAAI, vol. 36, pp. 879–887 (2022)
[24]
Zha, L., Chen, Y., Zhou, P., Zhang, Y.: Intensifying the consistency of pseudo label refinement for unsupervised domain adaptation person re-identification. In: ICME, pp. 1547–1552. IEEE (2023)
[25]
Li, Z., Shi, Y., Ling, H., Chen, J., Wang, Q., Zhou, F.: Reliability exploration with self-ensemble learning for domain adaptive person re-identification. In: AAAI, vol. 36, pp. 1527–1535 (2022)
[26]
Ge Y, Zhu F, Chen D, Zhao R, et al. Self-paced contrastive learning with hybrid memory for domain adaptive object re-id NeurIPS 2020 33 11309-11321
[27]
Yuhang, W., Huang, T., Yao, H., Zhang, C., Shao, Y., Han, C., Gao, C., Sang, N.: Multi-centroid representation network for domain adaptive person re-id. In: AAAI, vol. 36, pp. 2750–2758 (2022)
[28]
Lee, G., Lee, S., Kim, D., Shin, Y., Yoon, Y., Ham, B.: Camera-driven representation learning for unsupervised domain adaptive person re-identification. In: ICCV, pp. 11453–11462 (2023)
[29]
Isobe, T., Li, D., Tian, L., Chen, W., Shan, Y., Wang, S.: Towards discriminative representation learning for unsupervised person re-identification. In: ICCV, pp. 8526–8536 (2021)
[30]
Zheng, Y., Tang, S., Teng, G., Ge, Y., Liu, K., Qin, J., Qi, D., Chen, D.: Online pseudo label generation by hierarchical cluster dynamics for adaptive person re-identification. In: ICCV, pp. 8371–8381 (2021)
[31]
Huang, Y., Peng, P., Jin, Y., Li, Y., Xing, J.: Domain adaptive attention learning for unsupervised person re-identification. In: AAAI, vol. 34, pp. 11069–11076 (2020)
[32]
Ester, M., Kriegel, H.-P., Sander, J., Xiaowei, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)
[33]
Dai, Z., Wang, G., Yuan, W., Zhu, S., Tan, P.: Cluster contrast for unsupervised person re-identification. In: ACCV, pp. 1142–1160 (2022)
[34]
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: ICCV, pp. 1116–1124 (2015)
[35]
Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: ICCV, pp. 3754–3762 (2017)
[36]
Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: CVPR, pp. 79–88 (2018)
[37]
Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.: Shape and appearance context modeling. In: ICCV, pp. 1–8. IEEE (2007)
[38]
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)
[39]
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
[40]
Radenović F, Tolias G, and Chum O Fine-tuning CNN image retrieval with no human annotation IEEE Trans. Pattern Anal. Mach. Intell. 2018 41 7 1655-1668

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Pattern Recognition and Computer Vision: 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18–20, 2024, Proceedings, Part XII
Oct 2024
595 pages
ISBN:978-981-97-8857-6
DOI:10.1007/978-981-97-8858-3

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 03 November 2024

Author Tags

  1. Person re-identification
  2. Domain adaptation
  3. CycleGAN
  4. Attention alignment

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media