Nothing Special   »   [go: up one dir, main page]

skip to main content
article
Free access

A survey on wireless body area networks

Published: 01 January 2011 Publication History

Abstract

The increasing use of wireless networks and the constant miniaturization of electrical devices has empowered the development of Wireless Body Area Networks (WBANs). In these networks various sensors are attached on clothing or on the body or even implanted under the skin. The wireless nature of the network and the wide variety of sensors offer numerous new, practical and innovative applications to improve health care and the Quality of Life. The sensors of a WBAN measure for example the heartbeat, the body temperature or record a prolonged electrocardiogram. Using a WBAN, the patient experiences a greater physical mobility and is no longer compelled to stay in the hospital. This paper offers a survey of the concept of Wireless Body Area Networks. First, we focus on some applications with special interest in patient monitoring. Then the communication in a WBAN and its positioning between the different technologies is discussed. An overview of the current research on the physical layer, existing MAC and network protocols is given. Further, cross layer and quality of service is discussed. As WBANs are placed on the human body and often transport private data, security is also considered. An overview of current and past projects is given. Finally, the open research issues and challenges are pointed out.

References

[1]
Cypher, D., Chevrollier, N., Montavont, N., & Golmie, N. (2006). Prevailing over wires in healthcare environments: Benefits and challenges. IEEE Communications Magazine, 44(4), 56-63.
[2]
Istepanian, R. S. H., Jovanov, E., & Zhang, Y. T. (2004). Guest editorial introduction to the special section on m-health: Beyond seamless mobility and global wireless health-care connectivity. IEEE Transactions on Information Technology in Biomedicine, 8(4), 405-414.
[3]
Van Dam, K., Pitchers, S., & Barnard, M. (2001). Body area networks: Towards a wearable future. In Proceedings of WWRF kick off meeting, Munich, Germany, March 6-7, 2001.
[4]
Schmidt, R., Norgall, T., Mörsdorf, J., Bernhard, J., & von der Gün, T. (2002). Body area network ban--A key infrastructure element for patient-centered medical applications. Biomedizinische Technik. Biomedical engineering, 47(1), 365-368.
[5]
Gyselinckx, B., Van Hoof, C., Ryckaert, J., Yazicioglu, R. F., Fiorini, P., & Leonov, V. (2005). Human++: Autonomous wireless sensors for body area networks. In: Proceedings of the IEEE custom integrated circuits conference, pp. 13-19.
[6]
Otto, C., Milenkovic, A. Sanders, C., & Jovanov, E. (2006). System architecture of aC. wireless body area sensor network for ubiquitous health monitoring. Journal of Mobile Multimedia, 1(4), 307-326.
[7]
Lo, B., & Yang, G.-Z. (2006). Body Sensor Networks: Infrastructure for life science sensing research. In Life science systems and applications workshop, 2006. IEEE/NLM, Bethesda, MD, pp. 1-2.
[8]
Jurik, A. D., & Weaver, A. C. (2008). Remote medical monitoring. Computer, 41(4), 96-99.
[9]
Park, S., & Jayaraman, S. (2003). Enhancing the quality of life through wearable technology. IEEE Engineering in Medicine and Biology Magazine, 22(3), 41-48.
[10]
Gyselinckx, B., Vullers, R., Hoof, C. V., Ryckaert, J., Yazicioglu, R. F., Fiorini, P., & Leonov, V. (2006). Human++: Emerging technology for body area networks. In Very large scale integration, 2006 IFIP international conference on, pp. 175-180.
[11]
IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 khz to 300 ghz. 1999.
[12]
Poon, C. C. Y., Zhang, Y.-T., & Bao, S.-D. (2006). A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. IEEE Communications Magazine, 44(4), 73-81.
[13]
IEEE 802.15 WPAN Task Group 6 Body Area Networks. {Online}. Available: http://www.ieee802.org/15/pub/SGmban. htm.
[14]
World Health Organization {online} http://www.who.int/ mediacentre/factsheets/fs317/en/index.htm.
[15]
International Diabetes Federation (IDF) {Online} http://www. idf.org.
[16]
Latré, B., Vermeeren, G., Moerman, I., Martens, L., & Demeester, P. (2004). Networking and propagation issues in body area networks. In 11th Symposium on communications and vehicular technology in the Benelux, SCVT 2004, Ghent, Belgium, Nov 9, 2004.
[17]
Jovanov, E., Raskovic, D., Lords, A. O. Cox, P., Adhami, R., & Andrasik, F. (2003). Synchronized physiological monitoring using a distributed wireless intelligent sensor system. In Proceedings of the 25th annual international conference of the IEEE, 2, Engineering in medicine and biology society, pp. 1368-1371.
[18]
Drude, S. (2007). Requirements and application scenarios for body area networks. In: 16th IST on Mobile and wireless communications summit, Budapest, Hungary, Jul 2007, pp. 1-5.
[19]
Krames, E. (2002). Implantable devices for pain control: Spinal cord stimulation and intrathecal therapies. Best Practice & Research Clinical Anaesthesiology, 16(4), 619-649.
[20]
Li, H.-B., Takizawa, K.-I., Zhen, B., & Kohno, R. (2007). Body area network and its standardization at IEEE 802.15.MBAN. In 16th IST on mobile and wireless communications summit, Budapest, Hungary, Jul 2007, pp. 1-5.
[21]
Theogarajan, L., Wyatt, J., Rizzo, J., Drohan, B., Markova, M., Kelly, S., et al. (2006). Minimally invasive retinal prosthesis. In IEEE international conference digest of technical papers solid-state circuits, pp. 99-108.
[22]
Hoyt, R., Reifman, J., Coster, T., & Buller, M. (2002). Combat medical informatics: Present and future. In Proceedings of the AMIA 2002 annual symposium, San Antonio, TX, Nov 2002, pp. 335-339.
[23]
Akyildiz, I. F., Su, W. Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102-114.
[24]
Zasowski, T., Althaus, F., Stager, M., Wittneben, A., & Troster, G. (2003). UWB for noninvasive wireless body area networks: channel measurements and results. In: IEEE conference on ultra wideband systems and technologies, Nov 2003, pp. 285-289.
[25]
Penzel, T., Kemp, B., Klosch, G., Schlogl, A., Hasan, J., Varri, A., et al. (2001). Acquisition of biomedical signals databases. IEEE Engineering in Medicine and Biology Magazine, 20(3), 25-32.
[26]
Arnon, S., Bhastekar, D., Kedar, D., & Tauber, A. (2003). A comparative study of wireless communication network configurations for medical applications. IEEE {see also IEEE Personal Communications} Wireless Communications, 10(1), 56-61.
[27]
Gyselinckx, B., Penders, J., & Vullers, R. (2006). Potential and challenges of body area networks for cardiac monitoring, issue 6, supplement 1, ISCE 32nd annual conference, November-December 2007, pages s165-s168. Journal of Electrocardiolog, 40(6), S165-S168 (November-December 2006, iSCE 32nd annual conference).
[28]
Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 04(1), 18-27
[29]
von Buren, T., Mitcheson, P. D., Green, T. C., Yeatman, E. M., Holmes, A. S., & Troster, G. (2006). Optimization of inertial micropower generators for human walking motion. IEEE Sensors Journal, 6(1), 28-38.
[30]
International Commission on Non-ionizing Radiation Protection (ICNIRP) (1998). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 ghz). Health Physics, 74(4), 494-522.
[31]
Varshney, U., & Sneha, S. (2006). Patient monitoring using ad hoc wireless networks: reliability and power management. IEEE Communications Magazine, 44(4), 49-55.
[32]
Jovanov, E., Milenkovic, A., Otto, C., & de Groen, P. C. (2005). A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of Neuro-Engineering and Rehabilitation, 2(1), 16-23.
[33]
Bhargava, A. & Zoltowski, M. (2003). Sensors and wireless communication for medical care. In Proceedings of 14th international workshop on database and expert systems applications, Sep 2003, pp. 956-960.
[34]
Latré, B., Braem, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., & Demeester, P. (2007). A low-delay protocol for multihop wireless body area networks. In 4th Annual international conference on mobile and ubiquitous systems: Networking & services, 2007, Workshop PerNets, Philadelphia, PA, USA, August, 6-10, 2007, pp. 479-486.
[35]
Watteyne, T., Augé-Blum, S., Dohler, M., & Barthel, D. (2007). Anybody: A self-organization protocol for body area networks. In Second international conference on body area networks (BodyNets), Florence, Italy, June 11-13, 2007.
[36]
Takahashi, D., Xiao, Y., Hu, F., Chen, J., & Sun, Y. (2008). Temperature-aware routing for telemedicine applications in embedded biomedical sensor networks. EURASIP Journal on Wireless Communications and Networking, Vol. 2008, no. Article ID 572636, 2008, 11 p.
[37]
Ylisaukko-oja, A., Vildjiounaite, E., & Mantyjarvi, J. (2004). Five-point acceleration sensing wireless body area network-- design and practical experiences. ISWC, 00, 184-185.
[38]
Dokovski, N. T., van Halteren, A. T., & Widya, I. A. (2004) Banip: Enabling remote healthcare monitoring with body area networks. In N. Guelfi, E. Astesiano, & G. Reggio (Eds.), FIDJI 2003 international workshop on scientific engineering of distributed Java applications, Luxembourg, ser. Lecture notes in Computer Science, Vol. 2952/2004. 0.4em. Heidelberg: Springer, pp. 62-72.
[39]
Wac, K. E., Bults, R., van Halteren, A., Konstantas, D., & Nicola, V. F. (2004). Measurements-based performance evaluation of 3g wireless networks supporting m-health services. In S. Chandra, & N. Venkatasubramanian (Eds.), Proceedings of the SPIE multimedia computing and networking, Vol. 5680, pp. 176-187.
[40]
Milenkovic, A., Otto, C., & Jovanov, E. (2006). Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications, Wireless Sensor Networks and Wired/Wireless Internet Communications, 29(13), 2521-2533.
[41]
Olugbara, O. O., Adigun, M. O., Ojo, S. O., & Mudali, P. (2007). Utility grid computing and body area network as enabler for ubiquitous rural e-healthcare service provisioning. In 9th International conference on e-Health networking, application and services, Taipei, Taiwan, June 2007, pp. 202-207.
[42]
Chlamtac, I., Conti, M., & Liu, J. (2003). Mobile ad hoc networking: Imperatives and challenges. Ad Hoc Networks, 1(1), 13-64.
[43]
Akyildiz, I. F., & Kasimoglu, I. H. (2004). Wireless sensor and actor networks: Research challenges. Ad Hoc Networks, 2(2), 351-367.
[44]
Zasowski, T. (2007). A system concept for ultra wideband (UWB) body area networks. PhD Thesis, ETH Zürich, No. 17259.
[45]
Yang, G.-Z. (eds). (2006). Body Sensor Networks. plus 0.5 em minus 0.4 em. London: Springer.
[46]
Ruzzelli, A. G., Jurdak, R., O'Hare, G. M., & Stok, P. V. D. (2007). Energy-efficient multi-hop medical sensor networking. In HealthNet '07: Proceedings of the 1st ACM SIGMOBILE international workshop on systems and networking support for healthcare and assisted living environments(pp. 37-42). 0.5 em minus 0.4 em. New York, NY: ACM.
[47]
Shah, R. C., & Yarvis, M. (2006). Characteristics of on-body 802.15.4 networks. In 2nd IEEE workshop on Wireless Mesh Networks, 2006. WiMesh 2006, pp. 138-139. Reston, VA.
[48]
Rappaport, T. S. (2002). Wireless communication: Principles and practice, 2nd edn. Englewood Cliffs NJ: Prentice Hall.
[49]
Gupta, S. K. S., Lalwani, S., Prakash, Y., Elsharawy, E., & Schwiebert, L. (1997). Towards a propagation model for wireless biomedical applications. In Communications, 2003. ICC '03. IEEE International Conference on, Vol. 3, pp. 1993-1997.
[50]
Tang, Q., Tummala, N., Gupta, S. K. S., & Schwiebert, L. (2005) Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Transactions on Biomedical Engineering, 52(7), 1285-1294.
[51]
Johansson, A. J. (2002). Wave-propagation from medical implants-influence of body shape on radiation pattern. In 24th Annual conference and the annual fall meeting of the biomedical engineering society, Proceedings of the second joint EMBS/ BMES conference, Vol. 2, pp. 1409-1410.
[52]
Reusens, E., Joseph, W., Vermeeren, G., Martens, L., Latré, B., Braem, B., et al. (2007). Path-loss models for wireless communication channel along arm and torso: Measurements and simulations. In: IEEE antennas and propagation society international symposium, Honolulu, HI, June 9-15, 2007, pp. 336- 339.
[53]
Roelens, L., Van den Bulcke, S., Joseph, W., Vermeeren, G., & Martens, L. (2006). Path loss model for wireless narrowband communication above flat phantom. Electronics Letters, 42(1), 10-11.
[54]
Zasowski, T., Meyer, G., Althaus, F., Wittneben, A. (2005) Propagation effects in UWB body area networks. In: IEEE international conference on Ultra-Wideband, Sep 2005, pp. 16-21.
[55]
Fort, A., Ryckaert, J., Desset, C., De Doncker, P. Wambacq, P., & Van Biesen, L. (2006). Ultra-wideband channel model for communication around the human body. IEEE Journal on Selected Areas in Communications, 24, 927-933.
[56]
Zasowski, T., Meyer, G., Althaus, F., & Wittneben, A. (2006). UWB signal propagation at the human head. IEEE Transactions on Microwave Theory and Techniques, Apr 2006.
[57]
Braem, B., Latré, B. Moerman, I., Blondia, C., Reusens, E., Joseph, W., et al. (2007). The need for cooperation and relaying in short-range high path loss sensor networks. In First international conference on sensor technologies and applications (SENSORCOMM 2007), Valencia, Spain, Oct 14-20, 2007, pp. 566-571.
[58]
Fort, A., Desset, C., Ryckaert, J., De Doncker, P., Van Biesen, L., & Wambacq, P. (2005). Characterization of the ultra wide-band body area propagation channel. In IEEE international conference on Ultra-Wideband, Sep 2005.
[59]
Di Renzo, M., Buehrer, R. M., & Torres, J. (2007). Pulse shape distortion and ranging accuracy in uwbbased body area networks for fullbody motion capture and gait analysis. In: IEEE Globecom 2007, Nov 2007, pp. 3775-3780.
[60]
Neirynck, D. (2006). Channel characterisation and physical layer analysis for body and personal area network development. Ph.D. dissertation, University of Bristol, UK.
[61]
Zimmerman, T. (1996). Personal area networks: Nearfield intrabody communication. IBM Systems Journal, 35(3), 609-617.
[62]
Wegmueller, M. S., Kuhn, A., Froehlich, J., Oberle, M., Felber, N., Kuster, N., et al. (2007). An attempt to model the human body as a communication channel. IEEE Transactions on Biomedical Engineering, 54(10), 1851-1857.
[63]
Hachisuka, K., Terauchi, Y., Kishi, Y., Hirota, T., Sasaki, K., Hosaka, H. et al. (2005). Simplified circuit modeling and fabrication of intrabody communication devices. In The 13th international conference on solid-state sensors, actuators and microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05, Vol. 1, June 2005, pp. 461-464.
[64]
Zhong, L., El-Daye, D., Kaufman, B., Tobaoda, N., Mohamed, T., & Liebschner, M. (2007). Osteoconduct: Wireless body-area communication based on bone conduction. In Proceedings of international conference body area networks (BodyNets), June 2007.
[65]
Falck, T., Baldus, H., Espina, J., & Klabunde, K. (2007). Plug'n play simplicity for wireless medical body sensors. Mobile Networks and Applications, 12(2), 143-153.
[66]
Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: A survey. IEEE Communications Magazine, 44(4), 115-121.
[67]
Baronti, P., Pillai, P., Chook, V., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15.4 and zigbee standards. Computer Communications, 30(7), 1665-1695.
[68]
Johansson, P., Kazantzidis, M., Kapoor, R., & Gerla, M. (2001). Bluetooth: An enabler for personal area networking. IEEE Network, 15(5), 28-37.
[69]
IEEE 802.15.4-2003: IEEE Standard for Information Technology-- Part 15.4: Wireless medium access control and physical layer specifications for low rate wireless personal area networks.
[70]
Alliance, ZigBee, official webpage: http://www.zigbee.or.
[71]
Timmons, N. F., & Scanlon W. G. (2004). Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking. In First annual IEEE communications society conference on sensor and ad hoc communications and networks, 2004. IEEE SECON, pp. 16-24.
[72]
Li, H., & Tan, J. (2005). An ultra-low-power medium access control protocol for body sensor network. In 27th Annual international conference of the engineering in medicine and biology society, 2005. IEEE-EMBS, Shanghai, pp. 2451-2454.
[73]
Lamprinos, I. E., Prentza, A., Sakka, E., & Koutsouris, D. (2005). Energy-efficient MAC protocol for patient personal area networks. In 27th Annual international conference of the engineering in medicine and biology society, 2005. IEEE-EMBS, Shanghai, pp. 3799-3802.
[74]
Omeni, O. C., Eljamaly, O., & Burdett, A. J. (2007). Energy efficient medium access protocol for wireless medical body area sensor networks. In 4th IEEE/EMBS international summer school and symposium on medical devices and biosensors. ISSSMDBS 2007, Cambridge, UK, pp. 29-32.
[75]
Li, H., & Tan, J. (2007). Heartbeat driven medium access control for Body Sensor Networks. In HealthNet '07: Proceedings of the 1st ACM SIGMOBILE international workshop on systems and networking support for healthcare and assisted living environments. Puerto Rico, USA: ACM, 11 June, pp. 25-30.
[76]
Golmie, N., Cypher, D., & Rebala, O. (2005). Performance analysis of low rate wireless technologies for medical applications. Computer Communications, 28(10), 1266-1275.
[77]
Cavalcanti, D., Schmitt, R., & Soomro, A. (2007). Performance analysis of 802.15.4 and 802.11e for body sensor network applications. In 4th International workshop on wearable and implantable Body Sensor Networks (BSN 2007), Vol. 13, pp. 9- 14. Berlin: Springer.
[78]
Farella, E., Pieracci, A., Benini, L., & Acquaviva, A. (2006). A wireless body area sensor network for posture detection. In ISCC '06: Proceedings of the 11th IEEE symposium on computers and communications. pp. 454-459. minus 0.4em. Washington, DC: IEEE Computer Society.
[79]
Heile, B. (2007). IEEE 802.15 TG 6 PAR, IEEE15-07-0575/r9, IEEE-SA, December.
[80]
Lewis, D. (2008). 802.15 TG 6 Call for applications--Response summary, IEEE15-08-0407r6, IEEE-SA, July.
[81]
Astrin, A. (2008). 802.15 TG 6 Call for proposals (CFP), IEEE15-08-0829r1, IEEE-SA, November.
[82]
Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325-349.
[83]
Ren, H., & Meng, M. Q. H. (2006). Rate control to reduce bioeffects in wireless biomedical sensor networks. In 3rd Annual international conference on mobile and ubiquitous systems-- Workshops, San Jose, CA, pp. 1-7.
[84]
Bag, A., & Bassiouni, M. A. (2006). Energy efficient thermal aware routing algorithms for embedded biomedical sensor networks. In 2006 IEEE international conference on mobile adhoc and sensor systems (MASS), Vancouver, BC, pp. 604-609.
[85]
Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences, pp. 8020- 8024.
[86]
Moh, M., Culpepper, B. J., Dung, L., Moh, T.-S., Hamada, T., & Su, C.-F. (2005). On data gathering protocols for in-body biomedical sensor networks. In Global telecommunications conference. GLOBECOM '05. IEEE, 5.
[87]
Madan, R., Cui, S., Lall, S., & Goldsmith, N. A. (2006). Cross-\layer design for lifetime maximization in interference-limited wireless sensor networks. IEEE Transactions on Wireless Communications, 5(11), 3142-3152.
[88]
Melodia, T., Vuran, M., & Pompil, D. (2005). The state of the art in cross-layer design for wireless sensor networks. In Euro-NGI workshop on wireless and mobility, ser. LNCS 3883, pp. 78-92.
[89]
De Poorter, E., Latré, B., Moerman, I., & Demeester, P. (2008). Sensor and ad-hoc networks: Theoretical and algorithmic aspects, ser. Lecture Notes Electrical Engineering. Springer, June 2008, Vol. 7, Chap. Universal Framework for Sensor Networks.
[90]
Latré, B., De Poorter, E., Moerman, I., & Demeester, P. (2007). Mofban: A lightweight framework for body area networks. Lecture Notes in Computer Science, Proceedings of Embedded and Ubiquitous Computing (EUC 2007), 4808, 610-622.
[91]
Chen, D., & Varshney, P. K. (2004). Qos support in wireless sensor networks: A survey. In International conference on wireless networks (ICWN 2004). 1em plus 0.5em minus 0.4em. CSREA Press, June 2004.
[92]
Braem, B., Latré, B., Blondia, C., Moerman, I., & Demeester, P. (2008). Improving reliability in multi-hop body sensor networks. In Second international conference on sensor technologies and applications (SENSORCOMM 2008), Cap Esterel, France, August, 25-31, 2008, pp. 342-347.
[93]
Zhou, G., Lu, J., Wan, C.-Y., Yarvis, M., & Stankovic, J. (2008). Bodyqos: Adaptive and radio-agnostic qos for body sensor networks. April 2008, pp. 565-573.
[94]
Cherukuri, S., Venkatasubramanian, K. K., & Gupta, S. K. S. (2003). Biosec: A biometric based approach for securing communication in wireless networks of biosensors implanted in the human body. In Proceedings of international conference on parallel processing workshops, Oct 2003, pp. 432-439.
[95]
Balasubramanyn, V. B., Thamilarasu, G., & Sridhar, R. (2007). Security solution for data integrity inwireless biosensor networks. In 27th International conference on distributed computing systems workshops. ICDCSW '07, Toronto, Ontario, June 2007, pp. 79-79.
[96]
Singeleé, D., Latré, B., Braem, B., De Soete, M., De Cleyn, P., & Preneel, B. et al. (2008). A secure cross-layer protocol for multi hop wireless body area networks. In 7th International conference on ad-hoc networks & wireless (ADHOCNOW 2008), Vol. LNCS 5198, France, Sep 11-13, 2008, pp. 94-107.
[97]
Guennoun, M., Zandi, M., & El-Khatib, K. (2008). On the use of biometrics to secure wireless biosensor networks. In 3rd International conference on information and communication technologies: From theory to applications. ICTTA 2008, Damascus, Apr 2008, pp. 1-5.
[98]
Bao, S.-D., Poon, C. C. Y., Zhang, Y.-T., & Shen, L.-F. (2008). Using the timing information of heartbeats as an entity identifier to secure body sensor network. IEEE Transactions on Information Technology in Biomedicine, 12(6), 772-779.
[99]
Bui, F. M., & Hatzinakos, D. (2008). Biometric methods for secure communications in Body Sensor Networks: Resource-efficient key management and signal-level data scrambling. In EURASIP Journal on Advances in Signal Processing, Vol. 2008, article ID 529879, 16 p.
[100]
Moteiv {online} http://www.moteiv.co.
[101]
sentilla {online} http://www.sentilla.co.
[102]
Gao, T., Greenspan, D., Welsh, M., Juang, R. R., & Alm, A. (2005). Vital signs monitoring and patient tracking over a wireless network. In 27th Annual international conference of the engineering in medicine and biology society. IEEE-EMBS 2005, Shanghai, 2005, pp. 102-105.
[103]
Lorincz, K., Malan, D. J., Fulford-Jones, T. R. F., Nawoj, A., Clavel, A., Shnayder, V. et al. (2004). Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Computing, 3(4),16-23.
[104]
Venkatasubramanian, K., Deng, G., Mukherjee, T., Quintero, J., Annamalai, V., & Gupta, S. (2005). Ayushman: A wireless sensor network based health monitoring infrastructure and testbed. In Distributed Computing in Sensor Systems, Vol. 3560/ 2005, pp. 406-407, Berlin: Springer.
[105]
van Halteren, A. T., Bults, R. G. A., Wac, K. E., Konstantas, D., Widya, I. A., Dokovski, N. T., Koprinkov, G. T., Jones V.M., Herzog R. (2004) Mobile patient monitoring: The mobihealth system. The Journal on Information Technology in Healthcare, 2(5), 365-373.
[106]
BANET project website {online} http://www.banet.f.
[107]
Falck, T., Espina, J., Ebert, J. P., & Dietterle, D. (2006). BASUMA--The sixth sense for chronically ill patients. In International Workshop on Wearable and Implantable Body Sensor Networks. BSN 2006, Cambridge, MA, April 3-5, 2006, pp. 57-60.
[108]
Farella, E., Pieracci, A., Benini, L., Rocchi, L., Acquaviva, A. (2008). Interfacing human and computer with wireless body area sensor networks: The wimoca solution. Multimedia Tools and Applications, 38(3), 337-363.
[109]
IBBT IM3-project {online} http://www.projects.ibbt.be/im.

Cited By

View all
  • (2024)MAC approaches to communication efficiency and reliability under dynamic network traffic in wireless body area networks: a reviewComputing10.1007/s00607-024-01307-9106:8(2785-2809)Online publication date: 1-Aug-2024
  • (2023)RETRACTED ARTICLE: Collaborative communication and computational design for energy-efficient edge based learning networkEURASIP Journal on Wireless Communications and Networking10.1186/s13638-023-02299-42023:1Online publication date: 31-Aug-2023
  • (2023)A Unified Algorithmic Framework for Distributed Adaptive Signal and Feature Fusion Problems—Part I: Algorithm DerivationIEEE Transactions on Signal Processing10.1109/TSP.2023.327527271(1863-1878)Online publication date: 1-Jan-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Wireless Networks
Wireless Networks  Volume 17, Issue 1
January 2011
281 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 January 2011

Author Tags

  1. MAC
  2. Routing
  3. Wireless body area networks

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)52
  • Downloads (Last 6 weeks)5
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)MAC approaches to communication efficiency and reliability under dynamic network traffic in wireless body area networks: a reviewComputing10.1007/s00607-024-01307-9106:8(2785-2809)Online publication date: 1-Aug-2024
  • (2023)RETRACTED ARTICLE: Collaborative communication and computational design for energy-efficient edge based learning networkEURASIP Journal on Wireless Communications and Networking10.1186/s13638-023-02299-42023:1Online publication date: 31-Aug-2023
  • (2023)A Unified Algorithmic Framework for Distributed Adaptive Signal and Feature Fusion Problems—Part I: Algorithm DerivationIEEE Transactions on Signal Processing10.1109/TSP.2023.327527271(1863-1878)Online publication date: 1-Jan-2023
  • (2023)Internet of Things and Cloud Convergence for eHealth Systems: Concepts, Opportunities, and ChallengesWireless Personal Communications: An International Journal10.1007/s11277-023-10817-2133:3(1397-1447)Online publication date: 1-Dec-2023
  • (2022)The Design of a Wireless Network Home-Based Elderly Care System Based on Artificial Intelligence Technology and Its Impact on the Construction of the Social Security SystemWireless Communications & Mobile Computing10.1155/2022/57467592022Online publication date: 1-Jan-2022
  • (2022)Practical Distributed Reception for Wireless Body Area Networks Using Supervised LearningIEEE Transactions on Wireless Communications10.1109/TWC.2021.313431921:7(4898-4908)Online publication date: 1-Jul-2022
  • (2022)Privacy Preserved Medical Service Provider Selection in Cloud-based Wireless Body Area NetworkWireless Personal Communications: An International Journal10.1007/s11277-022-10003-w128:2(1349-1371)Online publication date: 12-Sep-2022
  • (2022)Static to dynamic transition of RPL protocol from IoT to IoV in static and mobile environmentsCluster Computing10.1007/s10586-022-03689-x26:1(847-862)Online publication date: 3-Aug-2022
  • (2021)Design, Measurements, and Analysis of Enhanced Bandwidth UWBInternational Journal of Ambient Computing and Intelligence10.4018/IJACI.202101010612:1(140-158)Online publication date: 1-Jan-2021
  • (2021)A robust guaranteed time slots allotment scheme for real-time and reliable communication in WBANsInternational Journal of Ad Hoc and Ubiquitous Computing10.1504/ijahuc.2021.11338336:2(101-113)Online publication date: 1-Jan-2021
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media