Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Quantum controlled-not gate in the bad cavity regime

Published: 01 August 2015 Publication History

Abstract

We propose a scheme to synthesize atom---photon hybrid controlled-not (CNOT) gate by combining atomic single-qubit operations via stimulated Raman adiabatic passage and photonic Faraday rotation in cavity QED system. Benefiting from its hybrid characteristic, we utilize atom---photon CNOT gate to construct quantum CNOT gate for remote atoms and photons, respectively. As our scheme works in the bad cavity regime and only involves virtual excitation of atoms, it may be robust against both cavity decay and atomic spontaneous emission, thus can be realized with less demanding technology than that previously mentioned.

References

[1]
Thompson, J.D., Tiecke, T.G., de Leon, N.P., Feist, J., Akimov, A.V., Gullans, M., Zibrov, A.S., Vuletic, V., Lukin, M.D.: Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202---1205 (2013)
[2]
Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710---4713 (1995)
[3]
Waks, E., Vuckovic, J.: Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)
[4]
Auffeves-Garnier, A., Simon, C., Gerard, J.M., Poizat, J.P.: Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys. Rev. A 75, 053823 (2007)
[5]
An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009)
[6]
Julsgaard, B., Kozhekin, A., Polzik, E.S.: Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400---403 (2001)
[7]
Leuenberger, M.N., Flatte, M.E., Awschalom, D.D.: Teleportation of electronic many-qubit states encoded in the electron spin of quantum dots via single photons. Phys. Rev. Lett. 94, 107401 (2005)
[8]
Hu, C.Y., Young, A., O'Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)
[9]
Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)
[10]
Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)
[11]
Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)
[12]
Chen, Q., Yang, W., Feng, M., Du, J.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011)
[13]
Mu, Q.X., Ma, Y.H., Zhou, L.: Output squeezing and entanglement generation from a single atom with respect to a low-Q cavity. Phys. Rev. A 81, 024301 (2010)
[14]
Chen, Q., Feng, M.: Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process. Phys. Rev. A 79, 064304 (2009)
[15]
Mei, F., Yu, Y.F., Feng, X.L., Zhang, Z.M., Oh, C.H.: Quantum entanglement distribution with hybrid parity gate. Phys. Rev. A 82, 052315 (2010)
[16]
Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012)
[17]
Peng, Z.H., Zou, J., Liu, X.J., Kuang, L.M.: Optimal entanglement concentration via photonic Faraday rotation in cavity QED. Opt. Commun. 313, 365---368 (2014)
[18]
Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)
[19]
Munro, W.J., Van Meter, R., Louis, S.G.R., Nemoto, K.: High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008)
[20]
van Loock, P., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006)
[21]
Zhou, Y.L., Li, C.Z.: Robust quantum gates via a photon triggering electromagnetically induced transparency. Phys. Rev. A 84, 044304 (2011)
[22]
Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)
[23]
Kim, H., Bose, R., Shen, T.C., Solomon, G.S., Waks, E.: A quantum logic gate between a solid-state quantum bit and a photon. Nat Photon 7, 373---377 (2013)
[24]
Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for Bose---Einstein condensates in an optical cavity on a chip. Nature 450, 272---277 (2007)
[25]
Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003---1026 (1998)
[26]
Kral, P., Thanopulos, I., Shapiro, M.: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53---77 (2007)
[27]
Kis, Z., Renzoni, F.: Qubit rotation by stimulated Raman adiabatic passage. Phys. Rev. A 65, 032318 (2002)
[28]
Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091---4094 (1995)
[29]
Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392---2395 (2000)
[30]
Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714---4717 (1995)
[31]
Osnaghi, S., Bertet, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902 (2001)
[32]
Walls, D.F., Milburn, G.J.: Quantum Optics, 2nd edn. Springer, New York (2008)
[33]
Thompson, R.J., Rempe, G., Kimble, H.J.: Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132---1135 (1992)
[34]
Fan, S., Kocabas, S.E., Shen, J.T.: Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys. Rev. A 82, 063821 (2010)
[35]
McAuslan, D.L., Longdell, J.J., Sellars, M.J.: Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator. Phys. Rev. A 80, 062307 (2009)
[36]
O'Brien, J.L., Pryde, G.J., Gilchrist, A., James, D.F.V., Langford, N.K., Ralph, T.C., White, A.G.: Quantum Process Tomography of a Controlled-NOT Gate. Phys. Rev. Lett. 93, 080502 (2004)
[37]
Gilchrist, A., Lang-ford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005)

Cited By

View all
  • (2019)Hybrid Toffoli gates with dipole-induced transparency effect in series and parallel cavity-waveguide systemsQuantum Information Processing10.1007/s11128-019-2400-918:9(1-19)Online publication date: 1-Sep-2019
  • (2018)Creation of qutrit and one-qubit gates in atom---cavity---laser systems by adiabatic passageQuantum Information Processing10.1007/s11128-018-1972-017:8(1-15)Online publication date: 1-Aug-2018
  • (2017)Compact quantum gates for hybrid photon---atom systems assisted by Faraday rotationQuantum Information Processing10.1007/s11128-016-1478-616:2(1-14)Online publication date: 1-Feb-2017
  1. Quantum controlled-not gate in the bad cavity regime

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Quantum Information Processing
      Quantum Information Processing  Volume 14, Issue 8
      August 2015
      444 pages

      Publisher

      Kluwer Academic Publishers

      United States

      Publication History

      Published: 01 August 2015

      Author Tags

      1. Photonic Faraday rotation
      2. Quantum controlled-not gate
      3. Stimulated Raman adiabatic passage

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 13 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2019)Hybrid Toffoli gates with dipole-induced transparency effect in series and parallel cavity-waveguide systemsQuantum Information Processing10.1007/s11128-019-2400-918:9(1-19)Online publication date: 1-Sep-2019
      • (2018)Creation of qutrit and one-qubit gates in atom---cavity---laser systems by adiabatic passageQuantum Information Processing10.1007/s11128-018-1972-017:8(1-15)Online publication date: 1-Aug-2018
      • (2017)Compact quantum gates for hybrid photon---atom systems assisted by Faraday rotationQuantum Information Processing10.1007/s11128-016-1478-616:2(1-14)Online publication date: 1-Feb-2017

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media