Pseudo-marginal Markov Chain Monte Carlo for Nonnegative Matrix Factorization
Abstract
References
- Pseudo-marginal Markov Chain Monte Carlo for Nonnegative Matrix Factorization
Recommendations
Pseudo-marginal Hamiltonian Monte Carlo
Bayesian inference in the presence of an intractable likelihood function is computationally challenging. When following a Markov chain Monte Carlo (MCMC) approach to approximate the posterior distribution in this context, one typically either uses MCMC ...
Marginal reversible jump Markov chain Monte Carlo with application to motor unit number estimation
Motor unit number estimation (MUNE) is a method which aims to provide a quantitative indicator of progression of diseases that lead to a loss of motor units, such as motor neurone disease. However the development of a reliable, repeatable and fast real-...
Analyzing Markov chain Monte Carlo output
AbstractMarkov chain Monte Carlo (MCMC) is a sampling‐based method for estimating features of probability distributions. MCMC methods produce a serially correlated, yet representative, sample from the desired distribution. As such it can be difficult to ...
Visual representation of the multivariate correlation structure in a Markov chain. Output analysis that accounts for this multivariate structure is able to more accurately summarize variability in the simulation process. We review the output analysis ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Kluwer Academic Publishers
United States
Publication History
Author Tags
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Other Metrics
Citations
View Options
View options
Get Access
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in