Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Using Health Chatbots for Behavior Change: A Mapping Study

Published: 01 May 2019 Publication History

Abstract

This study conducts a mapping study to survey the landscape of health chatbots along three research questions: What illnesses are chatbots tackling What patient competences are chatbots aimed at Which chatbot technical enablers are of most interest in the health domain We identify 30 articles related to health chatbots from 2014 to 2018. We analyze the selected articles qualitatively and extract a triplet for each of them. This data serves to provide a first overview of chatbot-mediated behavior change on the health domain. Main insights include: nutritional disorders and neurological disorders as the main illness areas being tackled; "affect" as the human competence most pursued by chatbots to attain change behavior; and "personalization" and "consumability" as the most appreciated technical enablers. On the other hand, main limitations include lack of adherence to good practices to case-study reporting, and a deeper look at the broader sociological implications brought by this technology.

References

[1]
Abashev, A., Grigoryev, R., Grigorian, K., and Boyko, V., Programming tools for messenger-based chatbot system organization: Implication for outpatient and translational medicines. BioNanoScience. 7(2):403---407, 2017. https://doi.org/10.1007/s12668-016-0376-9.
[2]
Andersson, G., and Cuijpers, P., Internet-based and other computerized psychological treatments for adult depression: a meta-analysis. Cognit. Behav. Ther. 38(4):196---205, 2009. https://doi.org/10.1080/16506070903318960.
[3]
Atay, C., Ireland, D., Liddle, J., Wiles, J., Vogel, A., Angus, D., Bradford, D., Campbell, A., Rushin, O., and Chenery, H. J., Can a smartphone-based chatbot engage older community group members? The impact of specialised content. Alzheimer's Dement.: J. Alzheimer's Assoc. 12(7):P1005---P1006, 2016. https://doi.org/10.1016/j.jalz.2016.06.2070.
[4]
Beun, R.J., Brinkman, W.-P., Fitrianie, S., Griffioen-Both, F., Horsch, C., Lancee, J., and Spruit, S.: Improving adherence in automated e-coaching. In: International conference on persuasive technology. pp. 276---287. Springer, 2016).
[5]
Bickmore, T. W., Puskar, K., Schlenk, E. A., Pfeifer, L. M., and Sereika, S. M., Maintaining reality: Relational agents for antipsychotic medication adherence. Interact. Comput. 22(4):276---288, 2010. https://doi.org/10.1016/j.intcom.2010.02.001.
[6]
Brinkman, P., Virtual health agents for behavior change: Research perspectives and directions. Proceedings of the workshop on graphical and robotic embodied agents for therapeutic systems (GREATS16) held during the international conference on intelligent virtual agents (IVA16), 2016.
[7]
Brixey, J., Hoegen, R., Lan, W., Rusow, J., Singla, K., Yin, X., Artstein, R., and Leuski, A., SHIHbot: A Facebook chatbot for sexual health information on HIV/AIDS. Proceedings of the 18th annual SIGdial meeting on discourse and dialogue. 370---373, 2017.
[8]
Callejas, Z., Griol, D., McTear, M.F., López-Cózar, R.: A virtual coach for active ageing based on sentient computing and m-health. International workshop on ambient assisted living: 59---66. Springer, 2014.
[9]
Cameron, G., Cameron, D., Megaw, G., Bond, R., Mulvenna, M., O'Neill, S., Armour, C., and McTear, M., Towards a chatbot for digital counselling. J. Med. Internet Res. 4(1):e3, 2017.
[10]
Cheng, A., Raghavaraju, V., Kanugo, J., Handrianto, Y.P., and Shang, Y., Development and evaluation of a healthy coping voice interface application using the Google home for elderly patients with type 2 diabetes. Consumer Communications & Networking Conference (CCNC), 2018 15th IEEE annual. Pp. 1---5. IEEE, 2018.
[11]
Chung, K., and Park, R.C., Chatbot-based healthcare service with a knowledge base for cloud computing. Cluster Computing. 1---13,2018.
[12]
Crawford, E., Bots are awesome! Humans? Not so much, https://chatbotsmagazine.com/bots-are-awesome-humans-not-so-much-7b2d62630668.
[13]
Cruz-Sandoval, D., and Favela, J., Semi-autonomous conversational robot to Deal with problematic behaviors from people with dementia. International conference on ubiquitous computing and ambient intelligence. 677---688. Springer, 2017.
[14]
Cruzes, D.S., and Dyba, T., Recommended steps for thematic synthesis in software engineering. In: 2011 international symposium on empirical software engineering and measurement. pp. 275---284. IEEE, 2011.
[15]
Dale, R., The return of the chatbots. Nat. Lang. Eng. 22(5):811---817, 2016. https://doi.org/10.1017/S1351324916000243.
[16]
Dubosson, F., Schaer, R., Savioz, R., and Schumacher, M., Going beyond the relapse peak on social network smoking cessation programmes: ChatBot opportunities. Swiss Med. Inform. 33, 2017.
[17]
Elmasri, D., and Maeder, A., A conversational agent for an online mental health intervention. International conference on brain and health informatics. 243---251. Springer, 2016.
[18]
Eysenbach, G., and Group, C.-E., CONSORT-EHEALTH: Improving and standardizing evaluation reports of web-based and mobile health interventions. Journal of medical Internet research. 13(4), 2011.
[19]
Fadhil, A., A conversational Interface to improve medication adherence: Towards AI support in Patient's treatment. arXiv preprint arXiv:1803.09844. 2018.
[20]
Fadhil, A., and Gabrielli, S., Addressing challenges in promoting healthy lifestyles: The al-chatbot approach. Proceedings of the 11th EAI international conference on pervasive computing Technologies for Healthcare. 261---265. ACM, 2017.
[21]
Fadhil, A., Villafiorita, A.: An adaptive learning with gamification & conversational UIs: The rise of CiboPoliBot. Adjunct publication of the 25th conference on user modeling, adaptation and personalization: 408---412. ACM, 2017.
[22]
Fernandez-Luque, L., Lattab, A., Hors, S., and Ahmedna, M., Implementation and feasibility study of a tailored health education bot in telegram for mothers of children with obesity and overweight. Qatar Foundation annual research conference proceedings. p. HBPD506. HBKU press Qatar, 2018.
[23]
Fogg, B. J., Persuasive technology: Using computers to change what we think and do. Ubiquity. 2002(December):5, 2002. https://doi.org/10.1145/764008.763957.
[24]
Gabrielli, S., Marie, K., and Corte, C.D., SLOWBot (Chatbot) lifestyle assistant. In: Proceedings of the 12th EAI international conference on pervasive computing Technologies for Healthcare. 367---370. ACM, New York, NY, USA, 2018.
[25]
Griol, D., and Molina, J.M., An ambient assisted living Mobile application for helping people with Alzheimer. International conference on practical applications of agents and multi-agent systems: 3---14. Springer, 2015.
[26]
Hsu, P., Zhao, J., Liao, K., Liu, T., Wang, C.: AllergyBot: A Chatbot technology intervention for young adults with food allergies dining out. In: Proceedings of the 2017 CHI conference extended abstracts on human factors in computing systems. pp. 74---79. ACM, 2017.
[27]
Huang, C., Yang, M., Huang, C., Chen, Y., Wu, M., Chen, K.: A Chatbot-supported smart wireless interactive healthcare system for weight control and health promotion. 2018 IEEE international conference on industrial engineering and engineering management (IEEM): 1791---1795, 2018.
[28]
Inkster, B., Sarda, S., and Subramanian, V., An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: Real-world data evaluation mixed-methods study. JMIR mHealth and uHealth. 6:e12106, 2018. https://doi.org/10.2196/mhealth.12106.
[29]
Isern, D., and Moreno, A., A systematic literature review of agents applied in healthcare. J. Med. Syst. 40(2):43, 2016. https://doi.org/10.1007/s10916-015-0376-2.
[30]
Ivarsson, M., and Gorschek, T., A method for evaluating rigor and industrial relevance of technology evaluations. Empiric. Softw. Eng. 16:365---395, 2011. https://doi.org/10.1007/s10664-010-9146-4.
[31]
Jeong, S., and Breazeal, C., Toward robotic companions that enhance psychological wellbeing with smartphone technology. Proceedings of the companion of the 2017 ACM/IEEE international conference on human-robot interaction. pp. 345---346. ACM, 2017.
[32]
Kimani, E., Bickmore, T., Trinh, H., Ring, L., Paasche-Orlow, M.K., and Magnani, J.W., A smartphone-based virtual agent for atrial fibrillation education and counseling. International conference on intelligent virtual agents. 120---127. Springer, 2016.
[33]
Kitchenham, B.A., Budgen, D., and Brereton, P., Evidence-based software engineering and systematic reviews. CRC Press, 2015.
[34]
Klopfenstein, L.C., Delpriori, S., Malatini, S., and Bogliolo, A., The rise of bots: A survey of conversational interfaces, patterns, and paradigms. Proceedings of the 2017 conference on designing interactive systems. 555---565. ACM, New York, NY, USA, 2017.
[35]
Kobori, Y., Osaka, A., Soh, S., and Okada, H., Novel application for sexual transmitted infection screening with an ai chatbot. J. Urol. 199(4, Supplement):e189---e190, 2018. https://doi.org/10.1016/j.juro.2018.02.516.
[36]
Kowatsch, T., Ni's sen, M., Shih, C.-H.I., Rüegger, D., Volland, D., Filler, A., Künzler, F., Barata, F., Hung, S., and Büchter, D., Text-based healthcare Chatbots supporting patient and health professional teams: Preliminary results of a randomized controlled trial on childhood obesity. Persuasive embodied agents for behavior change (PEACH2017). ETH Zurich, 2017.
[37]
Kowatsch, T., Volland, D., Shih, I., Rüegger, D., Künzler, F., Barata, F., Filler, A., Büchter, D., Brogle, B., and Heldt, K., Design and evaluation of a Mobile chat app for the open source behavioral health intervention platform MobileCoach. International conference on design science research in information systems: 485---489. Springer, 2017.
[38]
Kozinakova, B., Analysis of chatbot systems focusing on the elderly as users. Master Thesis, Politecnico de Milano, 2017.
[39]
Lambert, A.O.C., Montañez, C.H.T., Martinez, M.B., and Funes-Gallanzi, M., A conversational agent for use in the identification of rare diseases. In: Applications for future internet. 128---139. Springer, 2017.
[40]
Laranjo, L., Dunn, A. G., Tong, H. L., Kocaballi, A. B., Chen, J., Bashir, R., Surian, D., Gallego, B., Magrabi, F., and Lau, A., Conversational agents in healthcare: A systematic review. J. Am. Med. Inform. Assoc., 2018. https://doi.org/10.1093/jamia/ocy072.
[41]
Lisetti, C., Amini, R., and Yasavur, U., Now all together: Overview of virtual health assistants emulating face-to-face health interview experience. KI-Künstliche Intelligenz. 29(2):161---172, 2015. https://doi.org/10.1007/s13218-015-0357-0.
[42]
Ly, K. H., Ly, A.-M., and Andersson, G., A fully automated conversational agent for promoting mental well-being: A pilot RCT using mixed methods. Internet Interven. 10:39---46, 2017. https://doi.org/10.1016/j.invent.2017.10.002.
[43]
Miner, A., Chow, A., Adler, S., Zaitsev, I., Tero, P., Darcy, A., and Paepcke, A., Conversational agents and mental health: Theory-informed assessment of language and affect. Proceedings of the fourth international conference on human agent interaction. 123---130. ACM, 2016.
[44]
Miner, A. S., Milstein, A., Schueller, S., Hegde, R., Mangurian, C., and Linos, E., Smartphone-based conversational agents and responses to questions about mental health, interpersonal violence, and physical health. JAMA Intern. Med. 176(5):619---625, 2016. https://doi.org/10.1001/jamainternmed.2016.0400.
[45]
Oh, K.-J., Lee, D., Ko, B., and Choi, H.-J., A Chatbot for psychiatric counseling in mental healthcare service based on emotional dialogue analysis and sentence generation. Mobile data management (MDM), 2017 18th IEEE international conference on. 371---375. IEEE, 2017.
[46]
Pereira, J., Díaz, Ó.: Chatbot dimensions that matter: Lessons from the trenches. In: Web engineering, lecture notes in computer science, pp. 129---135. Springer, Cham (2018).
[47]
Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M., Systematic mapping studies in software engineering. Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering. pp. 68---77. BCS Learning & Development Ltd., Swindon, UK, 2008.
[48]
Richards, D., and Caldwell, P., Improving health outcomes sooner rather than later via an interactive website virtual specialist. IEEE Journal of Biomedical and Health Informatics. 1---1, 2017.
[49]
Richards, D., Caldwell, P.H.: Gamification to improve adherence to clinical treatment advice. Health literacy: Breakthroughs in research and practice: Breakthroughs in research and practice. 80, 2017.
[50]
Roniotis, A., and Tsiknakis, M., Detecting depression using voice signal extracted by Chatbots: A feasibility study. In: Interactivity, game creation, design, learning, and innovation. Springer, 2017, 386---392.
[51]
Schueller, S. M., Tomasino, K. N., and Mohr, D. C., Integrating human support into behavioral intervention technologies: The efficiency model of support. Clin. Psychol.: Sci. Pract. 24(1):27---45, 2017. https://doi.org/10.1111/cpsp.12173.
[52]
Stratou, G., Morency, L.P., DeVault, D., Hartholt, A., Fast, E., Lhommet, M., Lucas, G., Morbini, F., Georgila, K., Scherer, S., Gratch, J., Marsella, S., Traum, D., and Rizzo, A., A demonstration of the perception system in SimSensei, a virtual human application for healthcare interviews. 2015 international conference on affective computing and intelligent interaction (ACII). pp. 787---789, 2015.
[53]
van Heerden, A., Ntinga, X., and Vilakazi, K., The potential of conversational agents to provide a rapid HIV counseling and testing services. The Frontiers and advances in data science (FADS), 2017 international conference on. 80---85. IEEE, 2017.
[54]
Van Vuuren, S., and Cherney, L.R., A virtual therapist for speech and language therapy. International conference on intelligent virtual agents. 438---448. Springer, 2014.

Cited By

View all
  • (2024)Adding relevance to rigorComputer Science Review10.1016/j.cosrev.2024.10064953:COnline publication date: 1-Aug-2024
  • (2024)Co-designing Human–Chatbot Interaction for Various Healthcare Purposes: Considering Chatbots’ Social Characteristics and Communication ModalitiesHuman Aspects of IT for the Aged Population10.1007/978-3-031-61546-7_26(399-414)Online publication date: 29-Jun-2024
  • (2023)CommunityBots: Creating and Evaluating A Multi-Agent Chatbot Platform for Public Input ElicitationProceedings of the ACM on Human-Computer Interaction10.1145/35794697:CSCW1(1-32)Online publication date: 16-Apr-2023
  • Show More Cited By

Index Terms

  1. Using Health Chatbots for Behavior Change: A Mapping Study
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Journal of Medical Systems
          Journal of Medical Systems  Volume 43, Issue 5
          May 2019
          413 pages

          Publisher

          Plenum Press

          United States

          Publication History

          Published: 01 May 2019

          Author Tags

          1. Chatbots
          2. Instant messaging
          3. Mobile healthcare
          4. Software agents

          Qualifiers

          • Article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 07 Mar 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)Adding relevance to rigorComputer Science Review10.1016/j.cosrev.2024.10064953:COnline publication date: 1-Aug-2024
          • (2024)Co-designing Human–Chatbot Interaction for Various Healthcare Purposes: Considering Chatbots’ Social Characteristics and Communication ModalitiesHuman Aspects of IT for the Aged Population10.1007/978-3-031-61546-7_26(399-414)Online publication date: 29-Jun-2024
          • (2023)CommunityBots: Creating and Evaluating A Multi-Agent Chatbot Platform for Public Input ElicitationProceedings of the ACM on Human-Computer Interaction10.1145/35794697:CSCW1(1-32)Online publication date: 16-Apr-2023
          • (2023)Towards Cross-Content Conversational Agents for Behaviour Change: Investigating Domain Independence and the Role of Lexical Features in Written Language Around ChangeProceedings of the 5th International Conference on Conversational User Interfaces10.1145/3571884.3597136(1-13)Online publication date: 19-Jul-2023
          • (2023)A systematic review of applications of natural language processing and future challenges with special emphasis in text-based emotion detectionArtificial Intelligence Review10.1007/s10462-023-10509-056:12(15129-15215)Online publication date: 1-Dec-2023
          • (2022)“I’m at my wits’ end” - Anticipating Information Needs and Appropriate Support Strategies in Behaviour ChangeProceedings of the 2022 Conference on Human Information Interaction and Retrieval10.1145/3498366.3505807(396-399)Online publication date: 14-Mar-2022
          • (2022)“A Second Voice”: Investigating Opportunities and Challenges for Interactive Voice Assistants to Support Home Health AidesProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3517683(1-17)Online publication date: 29-Apr-2022
          • (2021)Exploring the Effects of Incorporating Human Experts to Deliver Journaling Guidance through a ChatbotProceedings of the ACM on Human-Computer Interaction10.1145/34491965:CSCW1(1-27)Online publication date: 22-Apr-2021
          • (2021)TensioBot: a Chatbot Assistant for Self-Managed in-House Blood Pressure CheckingJournal of Medical Systems10.1007/s10916-021-01730-x45:4Online publication date: 15-Mar-2021
          • (2021)Understanding the Stakeholders’ Expectations About an Adherence App: A Case StudyHuman-Computer Interaction – INTERACT 202110.1007/978-3-030-85607-6_5(73-81)Online publication date: 30-Aug-2021
          • Show More Cited By

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media