Nothing Special   »   [go: up one dir, main page]

skip to main content
article

A Visualization System for Interactive Exploration of the Cardiac Anatomy

Published: 01 June 2016 Publication History

Abstract

Because of the complex and fine structure, visualization of the heart still remains a challenging task, which makes it an active research topic. In this paper, we present a visualization system for medical data, which takes advantage of the recent graphics processing unit (GPU) and can provide real-time cardiac visualization. This work focuses on investigating the anatomical structure visualization of the human heart, which is fundamental to the cardiac visualization, medical training and diagnosis assistance. Several state-of-the-art cardiac visualization methods are integrated into the proposed system and a task specified visualization method is proposed. In addition, auxiliary tools are provided to generate user specified visualization results. The contributions of our work lie in two-fold: for doctors and medical staff, the system can provide task specified visualization with interactive visualization tools; for researchers, the proposed platform can serve as a baseline for comparing different rendering methods and can easily incorporate new rendering methods. Experimental results show that the proposed system can provide favorable cardiac visualization results in terms of both effectiveness and efficiency.

References

[1]
Alickovic, E., and Subasi, A., Medical decision support system for diagnosis of heart arrhythmia using dwt and random forests classifier. J. Med. Syst. 40(108):1---12, 2016.
[2]
Baig, M. M., and Gholamhosseini, H., Smart health monitoring systems: an overview of design and modeling. J. Med. Syst. 37(2):1---14, 2013.
[3]
Blinn, J. F.: Models of light reflection for computer synthesized pictures. In: ACM SIGGRAPH Computer Graphics, pp. 192---198, ACM (1977)
[4]
Bruckner, S., and Gröller, M. E.: Volumeshop: an interactive system for direct volume illustration. In: Visualization, pp. 477---480 (2005)
[5]
Cai, K., Yang, R., Li, L., Ou, S., Chen, Y., Dou, J., A semi-automatic coronary artery segmentation framework using mechanical simulation. J. Med. Syst. 39(10):129, 2015.
[6]
Cetin, M., and Iskurt, A., An automatic 3-d reconstruction of coronary arteries by stereopsis. J. Med. Syst. 40(73):1---8, 2016.
[7]
Cheng, C. C., Lu, C. F., Hsieh, T. Y., Lin, Y. J., Taur, J. S., Chen, Y. F., Design of a computer-assisted system to automatically detect cell types using ana if images for the diagnosis of autoimmune diseases. J. Med. Syst. 39(10):1---12, 2015.
[8]
Choi, G., Xiong, G., Cheng, C. P., Taylor, C. A., Methods for characterizing human coronary artery deformation from cardiac-gated computed tomography data. Biomedical Engineering. IEEE Trans. 61(10):2582---2592, 2014.
[9]
Gai, C., Wang, K., Zhang, L., Zuo, W., Strategy of statistics-based visualization for segmented 3d cardiac volume data set. Adv. Int. Comp. 6838:250---256, 2012.
[10]
Gi, S. O., Lee, Y. J., Koo, H. R., Lee, S. P., Lee, K. H., Kim, K. N., Kang, S. J., Lee, J. H., Lee, J. W., The effect of electrode designs based on the anatomical heart location for the non-contact heart activity measurement. J. Med. Syst. 39(191):1---17, 2015.
[11]
Kharche, S., Margetts, G. S. L., Leng, J., Holden, A. V., Zhang, H., Simulation of clinical electrophysiology in 3d human atria: a high-performance computing and high-performance visualization application. Concurrency and Computation: Practice & Experience 20(11):1317---1328, 2008.
[12]
Korostelev, M., Gong, N., Hu, A., Bai, L., Wen, K. Y.: M 2-pass: Sms-based mobile patient support and responding to challenges of transitional care. In: 2014 7th International Conference on Biomedical Engineering and Informatics (BMEI), IEEE, pp. 762---768 (2014)
[13]
Kurzendorfer, T., Girard, E., Gralewski, K., Kleinoeder, A., Kiraly, A. P., Strobel, N., Dori, Y., New biplane x-ray magnetic resonance image fusion prototype for 3d enhanced cardiac catheterization in congenital heart diseases. J. Cardiovasc. Magn. Reson. 16(Suppl1):O103, 2014.
[14]
Lum, E. B., and Ma, K. L.: Lighting transfer functions using gradient aligned sampling. In: Proceedings of the Conference on Visualization'04, IEEE Computer Society, pp. 289---296 (2004)
[15]
Mandal, I., and Sairam, N., Accurate prediction of coronary artery disease using reliable diagnosis system. J. Med. Syst. 36(5):3353---3373, 2012.
[16]
Max, N., Optical models for direct volume rendering. Visualization and Computer Graphics. IEEE Trans. 1 (2):99---108, 1995.
[17]
Melillo, P., Orrico, A., Scala, P., Crispino, F., Pecchia, L., Cloud-based smart health monitoring system for automatic cardiovascular and fall risk assessment in hypertensive patients. J. Med. Syst. 39(10):109, 2015.
[18]
Panigrahy, D., Rakshit, M., Sahu, P. K., Fpga implementation of heart rate monitoring system. J. Med. Syst. 40(49):1---12, 2016.
[19]
Raeiatibanadkooki, M., Quchani, S. R., KhalilZade, M., Bahaadinbeigy, K., Compression and encryption of ecg signal using wavelet and chaotically huffman code in telemedicine application. J. Med. Syst. 40(73):1---8, 2016.
[20]
Sepehri, A. A., Kocharian, A., Janani, A., Gharehbaghi, A., An intelligent phonocardiography for automated screening of pediatric heart diseases. J. Med. Syst. 40(16):1---10, 2016.
[21]
Villarreal, V., Hervas, R., Fontecha, J., Bravo, J., Mobile monitoring framework to design parameterized and personalized m-health applications according to the patients diseases. J. Med. Syst. 39(10):1---6, 2015.
[22]
Wang, K., Yang, F., Zuo, W., Ding, N., Zhang, H.: Effective transfer function for interactive visualization and multivariate volume data. In: Proceedings of Biomedical Engineering and Informatics, pp. 272---276 (2011)
[23]
Wang, K., Zhang, L., Gai, C., Zuo, W.: Illustrative visualization of segmented human cardiac anatomy based on context-preserving model. In: Computing in Cardiology, pp. 485---488 (2011)
[24]
Yang, F., Lu, W., Zhang, L., Zuo, W., Wang, K., Zhang, H.: Fusion visualization for cardiac anatomical and ischemic models with depth weighted optic radiation function. In: Computers in Cardiology, pp. 937---940. IEEE, Nice, France (2015)
[25]
Yang, F., Zhang, L., Lu, W., Zuo, W., Wang, K., Li, Y., Multivariate cardiac data visualization based on multi-dimentional transfer function with ray distance. Biomed. Mater. Eng. 24(6):3025---3032, 2014.
[26]
Yang, F., Zuo, W., Wang, K., Zhang, h.: 3d cardiac mri data visualization based on volume data preprocessing and transfer function design. In: Computers in Cardiology, pp. 717---720. IEEE, Bologna, Italy (2008)
[27]
Yang, F., Zuo, W., Wang, K., Zhang, H.: Visualization of segmented cardiac anatomy with accelerated rendering method. In: Computing in Cardiology, IEEE, pp. 789---792 (2009)
[28]
Zhang, L., Gai, C., Wang, K., lu, W., Zuo, W.: Gpu-based high performance wave propagation simulation of ischemia in anatomically detailed ventricle. In: Computing in Cardiology, pp. 469---472 (2011)
[29]
Zhang, L., Gai, C., Wang, K., Zuo, W.: Real-time interactive heart illustration platform via hardware accelerated rendering. In: 2011 3rd International Conference on Advanced Computer Control (ICACC), pp. 497---501 (2011)
[30]
Zhang, L., Wang, K., Zhang, H., Zuo, W., Liang, X., Shi, J., Illustrative cardiac visualization via perception-based lighting enhancement. Journal of Medical Imaging and Health Informatics 580(1):15---22, 2014.
[31]
Zhang, L., Wang, K., Zuo, W., Gai, C., G-heart a gpu-based system for electrophysiological simulation and multi-modality cardiac visualization. J. Comput. 9(2):360---367, 2014.
[32]
Zhang, L., Wang, K., Zuo, W., Yang, M., Real-time multi-volume rendering for 3d electrophysiological data visualization based on graphics processing unit. ICIC Express Letters Part B: Applications 4(6):1---6, 2013.
[33]
Zhang, Q., Eagleson, R., Peters, T., Gpu-based visualization and synchronization of 4-d cardiac mr and ultrasound images. IEEE Trans. Inf. Technol. Biomed. 16(5):878---890, 2012.

Cited By

View all
  • (2019)Parallel Coordinates Based Visualization for High-Dimensional DataProceedings of the 2019 3rd International Conference on Big Data Research10.1145/3372454.3372460(161-165)Online publication date: 20-Nov-2019
  • (2018)Region Space Guided Transfer Function Design for Nonlinear Neural Network Augmented Image VisualizationAdvances in Multimedia10.1155/2018/74793162018Online publication date: 1-Nov-2018
  • (2018)Development of pathological brain detection system using Jaya optimized improved extreme learning machine and orthogonal ripplet-II transformMultimedia Tools and Applications10.1007/s11042-017-5281-x77:17(22705-22733)Online publication date: 1-Sep-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Medical Systems
Journal of Medical Systems  Volume 40, Issue 6
June 2016
290 pages

Publisher

Plenum Press

United States

Publication History

Published: 01 June 2016

Author Tags

  1. Cardiac imaging
  2. GPU
  3. Interactive visualization
  4. Medical visualization system
  5. Volume rendering

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Parallel Coordinates Based Visualization for High-Dimensional DataProceedings of the 2019 3rd International Conference on Big Data Research10.1145/3372454.3372460(161-165)Online publication date: 20-Nov-2019
  • (2018)Region Space Guided Transfer Function Design for Nonlinear Neural Network Augmented Image VisualizationAdvances in Multimedia10.1155/2018/74793162018Online publication date: 1-Nov-2018
  • (2018)Development of pathological brain detection system using Jaya optimized improved extreme learning machine and orthogonal ripplet-II transformMultimedia Tools and Applications10.1007/s11042-017-5281-x77:17(22705-22733)Online publication date: 1-Sep-2018
  • (2018)Pathological brain detection using curvelet features and least squares SVMMultimedia Tools and Applications10.1007/s11042-016-4171-y77:3(3833-3856)Online publication date: 1-Feb-2018
  • (2018)Feature Selection for Automatic Tuberculosis Screening in Frontal Chest RadiographsJournal of Medical Systems10.1007/s10916-018-0991-942:8(1-11)Online publication date: 1-Aug-2018
  • (2018)An Improved Pathological Brain Detection System Based on Two-Dimensional PCA and Evolutionary Extreme Learning MachineJournal of Medical Systems10.1007/s10916-017-0867-442:1(1-15)Online publication date: 1-Jan-2018
  • (2017)An ontology-based approach to patient follow-up assessment for continuous and personalized chronic disease managementJournal of Biomedical Informatics10.1016/j.jbi.2017.06.02172:C(45-59)Online publication date: 1-Aug-2017
  • (2017)Automated pathological brain detection systemExpert Systems with Applications: An International Journal10.1016/j.eswa.2017.06.03888:C(152-164)Online publication date: 1-Dec-2017
  • (2017)Exploiting Energy Efficient Emotion-Aware Mobile ComputingMobile Networks and Applications10.1007/s11036-017-0865-222:6(1192-1203)Online publication date: 1-Dec-2017

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media