Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Locking-Free HDG Methods for Reissner–Mindlin Plates Equations on Polygonal Meshes

Published: 24 January 2025 Publication History

Abstract

We present and analyze a new hybridizable discontinuous Galerkin method for the Reissner–Mindlin plate bending problem. Our method is based on the formulation utilizing Helmholtz Decomposition. Then the system is decomposed into three problems: two trivial Poisson problems and a perturbed saddle-point problem. We apply HDG scheme for these three problems. This scheme yields the optimal convergence rate which is uniform with respect to the plate thickness on general polygonal meshes. Implementation is provided to illustrate the efficient of our new method. Numerical methods show that our method is truly locking-free on general polygonal meshes.

References

[1]
Adams, R.A., Fournier, J.J.: The Sobolev spaces wm,p(ω), in Sobolev spaces. In: Pure and Applied Mathematics, vol. 140, pp. 59–78. Elsevier (2003).
[2]
Arnold D Discretization by finite elements of a model parameter dependent problem Numer. Math. 1981 37 405-422
[3]
Arnold D, Boffi D, and Falk R Approximation by quadrilateral finite elements Math. Comput. 2002 71 909-922
[4]
Arnold DN, Brezzi F, Cockburn B, and Marini LD Unified analysis of discontinuous Galerkin methods for elliptic problems SIAM J. Numer. Anal. 2002 39 1749-1779
[5]
Arnold DN, Brezzi F, Falk RS, and Marini LD Locking-free Reissner–Mindlin elements without reduced integration Comput. Methods Appl. Mech. Eng. 2007 196 3660-3671 Special Issue Honoring the 80th Birthday of Professor Ivo Babuška
[6]
Arnold DN, Brezzi F, and Marini LD A family of discontinuous Galerkin finite elements for the Reissner–Mindlin plate J. Sci. Comput. 2005 22–23 25-45
[7]
Arnold DN and Falk RS A uniformly accurate finite element method for the Reissner–Mindlin plate SIAM J. Numer. Anal. 1989 26 1276-1290
[8]
Babuška I Error-bounds for finite element method Numer. Math. 1971 16 322-333
[9]
Babuška I and Zlámal M Nonconforming elements in the finite element method with penalty SIAM J. Numer. Anal. 1973 10 863-875
[10]
Bathe K-J and Brezzi F Pande GN and Middleton J A simplified analysis of two plate bending elements—the MITC4 and MITC9 elements Numer. Tech. Eng. Anal. Des. 1987 Dordrecht Springer 407-417
[11]
Bathe K-J, Brezzi F, and Cho SW The MITC7 and MITC9 plate bending elements Comput. Struct. 1989 32 797-814
[12]
Brezzi F, Bathe K-J, and Fortin M Mixed-interpolated elements for Reissner–Mindlin plates Int. J. Numer. Methods Eng. 1989 28 1787-1801
[13]
Brezzi F and Fortin M Numerical approximation of Mindlin–Reissner plates Math. Comput. 1986 47 151-158
[14]
Brezzi F, Fortin M, and Stenberg R Error analysis of mixed-interpolated elements for Reissner–Mindlin plate Math. Models Methods Appl. Sci. 1991
[15]
Carstensen C, Xie X, Yu G, and Zhou T A priori and a posteriori analysis for a locking-free low order quadrilateral hybrid finite element for Reissner–Mindlin plates Comput. Methods Appl. Mech. Eng. 2011 200 1161-1175
[16]
Castillo P, Cockburn B, Perugia I, and Schötzau D An a priori error analysis of the local discontinuous Galerkin method for elliptic problems SIAM J. Numer. Anal. 2000 38 1676-1706
[17]
Chen G, Hu W, Shen J, Singler JR, Zhang Y, and Zheng X An HDG method for distributed control of convection diffusion PDEs J. Comput. Appl. Math. 2018 343 643-661
[18]
Chen G, Xie X, and Zhang Y A robust HDG method for Reissner–Mindlin plate problem Numer. Anal. Appl. Math. 2020 1 2
[19]
Chen G, Singler JR, and Zhang Y An HDG method for Dirichlet boundary control of convection dominated diffusion PDEs SIAM J. Numer. Anal. 2019 57 1919-1946
[20]
Chinosi C, Lovadina C, and Marini L Nonconforming locking-free finite elements for Reissner–Mindlin plates Comput. Methods Appl. Mech. Eng. 2006 195 3448-3460
[21]
Cockburn B, Gopalakrishnan J, and Lazarov R Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems SIAM J. Numer. Anal. 2009 47 1319-1365
[22]
Cockburn B, Kanschat G, and Schötzau D A locally conservative LDG method for the incompressible Navier–Stokes equations Math. Comput. 2005 74 1067-1095
[23]
Di Pietro DA and Droniou J A discrete de Rham method for the Reissner–Mindlin plate bending problem on polygonal meshes Comput. Math. Appl. 2022 125 136-149
[24]
Duran R and Ghioldi A A finite element method for the Mindlin–Reissner plate model SIAM J. Numer. Anal. 1991
[25]
Duran RG The inf-sup condition and error estimates for the Arnold–Falk plate bending element Numerische Mathematik 1991 59 769-778
[26]
Durán RG Mixed Finite Element Methods 2008 Berlin Springer 1-44
[27]
Falgout RD and Yang UM Sloot PMA, Hoekstra AG, Tan CJK, and Dongarra JJ hypre: a library of high performance preconditioners Computational Science—ICCS 2002 2002 Berlin Springer 632-641
[28]
Falk R and Tu T Locking-free finite elements for the Reissner–Mindlin plate Math. Comput. 2000 69 911-928
[29]
Falk RS Finite Elements for the Reissner–Mindlin Plate 2008 Berlin Springer 195-232
[30]
Führer T, Heuer N, and Niemi AH A discontinuous Petrov–Galerkin method for Reissner–Mindlin plates SIAM J. Numer. Anal. 2023 61 995-1017
[31]
Führer, T., Heuer, N., Sayas, F.-J.: An ultraweak formulation of the Reissner–Mindlin plate bending model and DPG approximation (2019). https://arxiv.org/abs/1906.04869
[32]
Gallistl D and Schedensack M Taylor-hood discretization of the Reissner–Mindlin plate SIAM J. Numer. Anal. 2021 59 1195-1217
[33]
Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
[34]
Hansbo P, Heintz D, and Larson MG A finite element method with discontinuous rotations for the Mindlin–Reissner plate model Comput. Methods Appl. Mech. Eng. 2011 200 638-648
[35]
Hansbo P and Larson MG Locking free quadrilateral continuous/discontinuous finite element methods for the Reissner–Mindlin plate Comput. Methods Appl. Mech. Eng. 2014 269 381-393
[36]
Hu J and Shi Z-C Error analysis of quadrilateral Wilson element for Reissner–Mindlin plate Comput. Methods Appl. Mech. Eng. 2008 197 464-475
[37]
Hughes TJ and Franca LP A mixed finite element formulation for Reissner–Mindlin plate theory: uniform convergence of all higher-order spaces Comput. Methods Appl. Mech. Eng. 1988 67 223-240
[38]
Kiendl J, Auricchio F, BeirãodaVeiga L, Lovadina C, and Reali A Isogeometric collocation methods for the Reissner–Mindlin plate problem Comput. Methods Appl. Mech. Eng. 2015 284 489-507 Isogeometric Analysis Special Issue
[39]
Kikis G, Ambati M, De Lorenzis L, and Klinkel S Phase-field model of brittle fracture in Reissner–Mindlin plates and shells Comput. Methods Appl. Mech. Eng. 2021 373 113490
[40]
Kirby RM, Sherwin SJ, and Cockburn B To CG or to HDG: a comparative study J. Sci. Comput. 2012 51 183-212
[41]
Li B and Xie X Analysis of a family of HDG methods for second order elliptic problems J. Comput. Appl. Math. 2015 307 2016 37-51 1st Annual Meeting of SIAM Central States Section, April 11–12
[42]
Lovadina C A low-order nonconforming finite element for Reissner–Mindlin plates SIAM J. Numer. Anal. 2005 42 2688-2705
[43]
Nguyen N, Peraire J, and Cockburn B An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations J. Comput. Phys. 2011 230 1147-1170
[44]
Stenberg, R.: A new finite element formulation for the plate bending problem. In: Asymptotic Methods for Elastic Structures, pp. 209–221 (1995)
[45]
Stenberg R and Suri M An HP error analysis of MITC plate elements SIAM J. Numer. Anal. 1997 34 544-568
[46]
Yu G and Xie X Analysis of a 3-node mixed-shear-projected triangular element method for Reissner–Mindlin plates Numer. Methods Partial Differ. Equ. 2017 33 241-258
[47]
Zhongnian X A thick-thin triangular element Int. J. Numer. Methods Eng. 1992 33 963-973

Index Terms

  1. Locking-Free HDG Methods for Reissner–Mindlin Plates Equations on Polygonal Meshes
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Journal of Scientific Computing
            Journal of Scientific Computing  Volume 102, Issue 3
            Mar 2025
            838 pages

            Publisher

            Plenum Press

            United States

            Publication History

            Published: 24 January 2025
            Accepted: 03 January 2025
            Revision received: 30 August 2024
            Received: 25 July 2023

            Author Tags

            1. Reissner–Mindlin plate
            2. Hybridizable discontinuous Galerkin method
            3. Error analysis
            4. Locking-free

            Qualifiers

            • Research-article

            Funding Sources

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 17 Feb 2025

            Other Metrics

            Citations

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media