Nothing Special   »   [go: up one dir, main page]

skip to main content
article

The Enriched Crouzeix---Raviart Elements are Equivalent to the Raviart---Thomas Elements

Published: 01 May 2015 Publication History

Abstract

For both the Poisson model problem and the Stokes problem in any dimension, this paper proves that the enriched Crouzeix---Raviart elements are actually identical to the first order Raviart---Thomas elements in the sense that they produce the same discrete stresses. This result improves the previous result in literature which, for two dimensions, states that the piecewise constant projection of the stress by the first order Raviart---Thomas element is equal to that by the Crouzeix---Raviart element. For the eigenvalue problem of the Laplace operator, this paper proves that the error of the enriched Crouzeix---Raviart element is equivalent to that of the first order Raviart---Thomas element up to higher order terms.

References

[1]
Arbogast, T., Chen, Z.X.: On the implementation of mixed methods as nonconforming methods for second order elliptic problems. Math. Comput. 64, 943---972 (1995)
[2]
Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. ETNA 17, 93---101 (2004)
[3]
Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19, 7---32 (1985)
[4]
Arnold, D.N., Falk, R.S.: A new mixed formulation for elasticity. Numer. Math. 53, 13---30 (1988)
[5]
Bab'ska, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641---787. North Holland (1991)
[6]
Braess, D.: An a posteriori error estimate and a comparison theorem for the nonconforming P1 element. Calcolo 46, 149---155 (2009)
[7]
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1996)
[8]
Brenner, S.C.: A multigrid algorithm for the first order Raviart---Thomas mixed triangular finite element method. SIAM J. Numer. Anal. 29, 647---678 (1992)
[9]
Cai, Z., Lee, B., Wang, P.: Least-quares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42, 843---859 (2004)
[10]
Cai, Z., Wang, Y.: A multigrid method for the pseudostress formulation of Stokes problems. SIAM J. Sci. Comput. 29, 2078---2095 (2007)
[11]
Carstensen, C., Gallistl, D., Schedensack, M.: Quasi-optimal adaptive pseudostress approximation of the Stokes equations. SIAM J. Numer. Anal. 51, 1715---1734 (2013)
[12]
Carstensen, C., Hoppe, R.H.W.: Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103, 251---266 (2006)
[13]
Carstensen, C., Hoppe, R.H.W.: Error reduction and convergence for an adaptive mixed finite element method. Math. Comput. 75, 1033---1042 (2006)
[14]
Carstensen, C., Kim, D., Park, E.J.: A priori and a posteriori pseudostress-velocity mixed finite element error analysis for the Stokes problem. SIAM J. Numer. Anal. 49, 2501---2523 (2011)
[15]
Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50, 2803---2823 (2012)
[16]
Crouzeix, M., Raviart, P.A.: Conforming and Nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér 7 R---3, 33---76 (1973)
[17]
Durán, R.G., Gastaldi, L., Padra, C.: A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Mod. Meth. Appl. Sci. 9, 1165---1178 (1999)
[18]
Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79, 2169---2189 (2010)
[19]
Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytech. Scand. Civil Eng. Ser. 46, 1---28 (1967)
[20]
Herrmann, L.: Finite element bending analysis for plates. J. Eng. Mech. Div. ASCE 93, 13---26 (1967)
[21]
Hu, J., Huang, Y.Q., Lin, Q.: Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods. J. Sci. Comput. (2014).
[22]
Hu, J., Huang, Y.Q., Shen, Q.: The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators. J. Sci. Comput. 58, 574---591 (2014)
[23]
Hu, J., Ma, R., Shi, Z.C.: A new a priori error estimate of nonconforming finite element methods. Sci. China Math. 57, 887---902 (2014)
[24]
Hu, J., Xu, J.C.: Convergence of Adaptive Conforming and Nonconforming Finite Element Methods for the Perturbed Stokes Equation, Research Report (2007), School of Mathematical Sciences and Institute of Mathematics, Peking University. (Also available online from December 2007: http://www.math.pku.edu.cn:8000/var/preprint/7297)
[25]
Johnson, C.: On the convergence of a mixed finite element method for plate bending problems. Numer. Math. 21, 43---62 (1973)
[26]
Marini, L.D.: An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22, 493---496 (1985)
[27]
Mao, S., Shi, Z.C.: On the error bounds of nonconforming finite elements. Sci. China Math. 53, 2917---2926 (2010)
[28]
Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36, 427---453 (1981)
[29]
Morley, L.S.D.: The triangular equilibrium element in the solutions of plate bending problem. Aero. Quart. 19, 149---169 (1968)
[30]
Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods. Lecture Notes in Math. 606, pp. 292---315, Springer, Berlin (1977)

Cited By

View all
  • (2024)New quadratic and cubic polynomial enrichments of the Crouzeix–Raviart finite elementComputers & Mathematics with Applications10.1016/j.camwa.2024.06.019170:C(204-212)Online publication date: 15-Sep-2024
  • (2023)Guaranteed local error estimation for finite element solutions of boundary value problemsJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115061425:COnline publication date: 1-Jun-2023
  • (2021)Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elementsAdvances in Computational Mathematics10.1007/s10444-021-09874-747:4Online publication date: 29-Jun-2021
  1. The Enriched Crouzeix---Raviart Elements are Equivalent to the Raviart---Thomas Elements

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Scientific Computing
    Journal of Scientific Computing  Volume 63, Issue 2
    May 2015
    325 pages

    Publisher

    Plenum Press

    United States

    Publication History

    Published: 01 May 2015

    Author Tags

    1. 35J25
    2. 65N15
    3. 65N30
    4. Crouzeix---Raviart element
    5. Eigenvalue problem
    6. Enriched Crouzeix---Raviart element
    7. Raviart---Thomas element
    8. The Poisson equation
    9. The Stokes equation

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)New quadratic and cubic polynomial enrichments of the Crouzeix–Raviart finite elementComputers & Mathematics with Applications10.1016/j.camwa.2024.06.019170:C(204-212)Online publication date: 15-Sep-2024
    • (2023)Guaranteed local error estimation for finite element solutions of boundary value problemsJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115061425:COnline publication date: 1-Jun-2023
    • (2021)Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elementsAdvances in Computational Mathematics10.1007/s10444-021-09874-747:4Online publication date: 29-Jun-2021

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media