Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Stable Interface Conditions for Discontinuous Galerkin Approximations of Navier-Stokes Equations

Published: 01 October 2009 Publication History

Abstract

A study of boundary and interface conditions for Discontinuous Galerkin approximations of fluid flow equations is undertaken in this paper. While the interface flux for the inviscid case is usually computed by approximate Riemann solvers, most discretizations of the Navier-Stokes equations use an average of the viscous fluxes from neighboring elements. The paper presents a methodology for constructing a set of stable boundary/interface conditions that can be thought of as "viscous" Riemann solvers and are compatible with the inviscid limit.

References

[1]
Abarbanel, S., Gottlieb, D.: Optimal time splitting for two- and three-dimensional Navier-Stokes equations with mixed derivatives. J. Comput. Phys. 41, 1-33 (1981).
[2]
Bassi, F., Rebay, S.: High-order accurate discontinuous Galerkin method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 251-285 (1997).
[3]
Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699-730 (2008).
[4]
Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54, 545-581 (1990).
[5]
Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comput. 52, 411-435 (1989).
[6]
Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84, 90-113 (1989).
[7]
Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440-2463 (1998).
[8]
Dutt, P.: Stable boundary conditions and difference schemes for Navier-Stokes equations. SIAM J. Numer. Anal. 25, 245-267 (1988).
[9]
Friedrichs, K.O., Lax, P.D.: Systems of conservation equations with a convex extension. Proc. Acad. Sci. USA 68, 1686-1688 (1971).
[10]
Gassner, G., Lörcher, F., Munz, C.-D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224, 1049-1063 (2007).
[11]
Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high-order time discretization methods, ICASE Report No. 2000-15, NASA Langley, VA.
[12]
Gustaffson, B., Sundstörm, A.: Incompletely parabolic problems in fluid dynamics. SIAM J. Appl.Math. 35, 343-357 (1978).
[13]
Halpern, L.: Artificial boundary conditions for incompletely parabolic perturbations of hyperbolic systems. SIAM J. Appl. Anal. 22, 1256-1283 (1991).
[14]
Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier-Stokes equations I: Method formulation. Int. J. Numer. Anal. Model 3(1), 1-20 (2005).
[15]
Hesthaven, J.S., Gottlieb, D.: A stable penalty method for the compressible Navier-Stokes equations: I. Open boundary conditions. SIAM J. Sci. Comput. 17(3), 579-612 (1996).
[16]
Hirsch, C.: Numerical Computation of Internal and External Flows, vol. 2, pp. 132-223. Wiley-Interscience, New York (1990).
[17]
Kutluay, S., Esen, A., Dag, I.: Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method. J. Comput. Appl. Math. 167(1), 21-33 (2004).
[18]
Nair, R.D., Thomas, S.J., Loft, R.D.: A discontinuous Galerkin transport scheme on the Cubed-Sphere. Mon. Weather Rev. 133, 814-828 (2004).
[19]
Nordstrom, J.: The use of characteristic boundary conditions for the Navier-Stokes equations. Comput. Fluids 24, 609-623 (1995).
[20]
Oliger, J., Sundström, A.: Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Anal. 35, 419-446 (1978).
[21]
Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973).
[22]
Shu, C.-W.: Different formulations of the Discontinuous Galerkin Method for the viscous terms. In: Shi, Z.-C., Mu, M., Xue, W., Zou, J. (eds.) Advances in Scientific Computing, pp. 144-155. Science Press, Beijing (2001).
[23]
Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439-471 (1988).
[24]
Stanescu, D., Hussaini, M.Y., Farassat, F.: Aircraft engine noise scattering by fuselage and wings: A computational approach. J. Sound Vib. 263, 319-333 (2003).
[25]
Turkel, E.: Symmetrization of the fluid dynamic matrices with applications. Math. Comput. 27(124), 729-736 (1973).
[26]
Warming, R.F., Beam, R.M., Hyett, B.J.: Diagonalization and simultaneous symmetrization of the gasdynamic matrices. Math. Comput. 29(132), 1037-1045 (1975).
  1. Stable Interface Conditions for Discontinuous Galerkin Approximations of Navier-Stokes Equations

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Journal of Scientific Computing
        Journal of Scientific Computing  Volume 41, Issue 1
        October 2009
        164 pages

        Publisher

        Plenum Press

        United States

        Publication History

        Published: 01 October 2009

        Author Tags

        1. Discontinous Galerkin
        2. Navier-Stokes
        3. Stable interface conditions

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 10 Nov 2024

        Other Metrics

        Citations

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media