Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Reasoning in Description Logics by a Reduction to Disjunctive Datalog

Published: 01 October 2007 Publication History

Abstract

As applications of description logics proliferate, efficient reasoning with knowledge bases containing many assertions becomes ever more important. For such cases, we developed a novel reasoning algorithm that reduces a $\mathcal{SHIQ}$ knowledge base to a disjunctive datalog program while preserving the set of ground consequences. Queries can then be answered in the resulting program while reusing existing and practically proven optimization techniques of deductive databases, such as join-order optimizations or magic sets. Moreover, we use our algorithm to derive precise data complexity bounds: we show that $\mathcal{SHIQ}$ is data complete for NP, and we identify an expressive fragment of $\mathcal{SHIQ}$ with polynomial data complexity.

References

[1]
1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley, Reading, MA (1995).
[2]
2. Alsaç, G., Baral, C.: Reasoning in description logics using declarative logic programming. Technical report, Arizona State University, Arizona. http://www.public.asu.edu/~cbaral/papers/ descr-logic-aaai2.pdf (2002).
[3]
3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge, MA (2003).
[4]
4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, MA (1998).
[5]
5. Baaz, M., Egly, U., Leitsch, A.: Normal form transformations. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I. Chapt. 5, pp. 273-333. Elsevier Science, Amsterdam (2001).
[6]
6. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Inf. Comput. 121 (2), 172-192 (1995).
[7]
7. Beeri, C., Ramakrishnan, R.: On the power of magic. In: Proceedings of the 6th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS '87), pp. 269-283. San Diego, CA, USA (1987).
[8]
8. Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artif. Intell. 82 (1-2), 353-367 (1996).
[9]
9. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 260-270. Lake District, UK (2006).
[10]
10. Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual data modeling. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, Chapt. 8, pp. 229-263. Kluwer, Boston, MA (1998).
[11]
11. Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM Trans. Database Syst. 1 (1), 9-36 (1976).
[12]
12. Cumbo, C., Faber, W., Greco, G., Leone, N.: Enhancing the magic-set method for disjunctive datalog programs. In: Demoen, B., Lifschitz, V. (eds.) Proceedings of the 20th Int. Conf. on Logic Programming (ICLP 2004), LNCS, vol. 3132, pp. 371-385. Saint-Malo, France (2004).
[13]
13. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33 (3), 374-425 (2001).
[14]
14. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database Syst. 22 (3), 364-418 (1997).
[15]
15. Fitting, M.: First-order logic and theorem proving. In: Texts in Computer Science, 2nd edn. Springer, Berlin Heidelberg New York (1996).
[16]
16. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Proceedings of the 12th Int. World Wide Web Conference (WWW 2003), pp. 48-57. Budapest, Hungary (2003).
[17]
17. Haarslev, V., Möller, R.,: RACER system description. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) Proceedings of the 1st Int. Joint Conf. on Automated Reasoning (IJCAR 2001), LNAI, vol. 2083, pp. 701-706. Siena, Italy (2001).
[18]
18. Haarslev, V., Möller, R., Turhan, A.-Y.: Exploiting pseudo models for TBox and ABox reasoning in expressive description logics. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) Proceedings of the 1st Int. Joint Conf. on Automated Reasoning (IJCAR 2001), LNAI, vol. 2083, pp. 61-75. Siena, Italy (2001).
[19]
19. Heymans, S., Vermeir, D.: Integrating semantic web reasoning and answer set programming. In: Vos, M.D., Provetti, A. (eds.) Proceedings of the 2nd Int. Workshop on Answer Set Programming, Advances in Theory and Implementation (ASP'03), CEUR Workshop Proceedings, vol. 78, pp. 194-208. Messina, Italy (2003).
[20]
20. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: the making of a web ontology language. J. Web Sem. 1 (1), 7-26 (2003).
[21]
21. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics. Log. J. IGPL 8 (3), 239-263 (2000).
[22]
22. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ - description logic to disjunctive datalog programs. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) Proceedings of the 9th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2004), pp. 152-162. Whistler, Canada (2004).
[23]
23. Hustadt, U., Motik, B., Sattler, U.: A decomposition rule for decision procedures by resolution-based calculi. In: Baader, F., Voronkov, A. (eds.) Proceedings of the 11th Int. Conf. on Logic for Programming Artificial Intelligence and Reasoning (LPAR 2004), LNAI, vol. 3452, pp. 21-35. Montevideo, Uruguay (2005a).
[24]
24. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive description logics. In: Proceedings of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp. 466-471. Edinburgh, UK (2005b).
[25]
25. Hustadt, U., Schmidt, R.A.: On the relation of resolution and tableaux proof systems for description logics. In: Thomas, D. (ed.) Proceedings of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI '99), pp. 110-115. Stockholm, Sweden (1999).
[26]
26. Kazakov, Y., de Nivelle, H.: A resolution decision procedure for the guarded fragment with transitive guards. In: Basin, D., Rusinowitch, M. (eds.) Proceedings of the 2nd Int. Joint Conf. on Automated Reasoning (IJCAR 2004), LNAI, vol. 3097, pp. 122-136. Cork, Ireland (2004).
[27]
27. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ . In: Furbach, U., Harrison, J., Shankar, N. (eds.) Proceedings of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR 2006), LNAI, vol. 4130, pp. 662-667. Seattle, WA (2006).
[28]
28. Motik, B.: Reasoning in description logics using resolution and deductive databases. Ph.D. thesis, Univesität Karlsruhe, Germany (2006).
[29]
29. Motik, B., Sattler, U.: A comparison of reasoning techniques for querying large description logic ABoxes. In: Hermann, M., Voronkov, A. (eds.) Proceedings of the 13th Int. Conf. on Logic for Programming Artificial Intelligence and Reasoning (LPAR 2006), pp. 227-241. Phnom Penh, Cambodia (2006), (accepted for publication).
[30]
30. Nebel, B.: Terminological cycles: semantics and computational properties. In: Sowa, J.F. (ed.) Principles of Semantic Networks: Explorations in the Representation of Knowledge, pp. 331-361. Morgan Kaufmann, San Mateo, CA (1991).
[31]
31. Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering and equality constrained clauses. J. Symb. Comput. 19 (4), 312-351 (1995).
[32]
32. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I. Chapt. 6, pp. 335-367. Elsevier, Amsterdam (2001).
[33]
33. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, MA (1993).
[34]
34. Parsia, B., Sirin, E.: Pellet: an OWL-DL reasoner. Poster, In: Proceedings of the 3rd Int. Semantic Web Conference (ISWC 2004), Hiroshima, Japan, 7-11 November (2004).
[35]
35. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2 (3), 293-304 (1996).
[36]
36. Schaerf, A.: Query answering in concept-based knowledge representation systems: algorithms, complexity, and semantic issues. Ph.D. thesis, Dipartimento di Informatica e Sistemistica, Università di Roma "La Sapienza," Italy (1994).
[37]
37. Swift, T.: Deduction in ontologies via ASP. In: Lifschitz, V., Niemelä, I. (eds.) Proceedings of the 7th Int. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR 2004), LNCS, vol. 2923, pp. 275-288. Fort Lauderdale, FL (2004).
[38]
38. Tobies, S.: Complexity results and practical algorithms for logics in knowledge representation. Ph.D. thesis, RWTH Aachen, Germany (2001).
[39]
39. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Proceedings of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR 2006), LNAI, vol. 4130, pp. 292-297. Seattle, WA (2006).

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Automated Reasoning
Journal of Automated Reasoning  Volume 39, Issue 3
October 2007
183 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 October 2007

Author Tags

  1. Data complexity
  2. Description logics
  3. Disjunctive datalog

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Rewriting the Infinite Chase for Guarded TGDsACM Transactions on Database Systems10.1145/369641649:4(1-44)Online publication date: 18-Sep-2024
  • (2024)Datalog rewritability and data complexity of ALCHOIQ with closed predicatesArtificial Intelligence10.1016/j.artint.2024.104099330:COnline publication date: 1-May-2024
  • (2023)Saturation-Based Boolean Conjunctive Query Answering and Rewriting for the Guarded Quantification FragmentsJournal of Automated Reasoning10.1007/s10817-023-09687-x67:4Online publication date: 23-Nov-2023
  • (2022)Rewriting the infinite chaseProceedings of the VLDB Endowment10.14778/3551793.355185115:11(3045-3057)Online publication date: 1-Jul-2022
  • (2020)Resolution-based rewriting for Horn- ontologiesKnowledge and Information Systems10.1007/s10115-019-01345-262:1(107-143)Online publication date: 1-Jan-2020
  • (2020)An Introduction to Answer Set Programming and Some of Its ExtensionsReasoning Web. Declarative Artificial Intelligence10.1007/978-3-030-60067-9_6(149-185)Online publication date: 24-Jun-2020
  • (2019)When is ontology-mediated querying efficient?Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science10.5555/3470152.3470205(1-13)Online publication date: 24-Jun-2019
  • (2019)Model comparison games for horn description logicsProceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science10.5555/3470152.3470156(1-14)Online publication date: 24-Jun-2019
  • (2019)Consequence-based reasoning for description logics with disjunctions and number restrictionsJournal of Artificial Intelligence Research10.1613/jair.1.1125763:1(625-690)Online publication date: 17-Apr-2019
  • (2019)Joining Implications in Formal Contexts and Inductive Learning in a Horn Description LogicFormal Concept Analysis10.1007/978-3-030-21462-3_9(110-129)Online publication date: 25-Jun-2019
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media