Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Budget-constrained profit maximization without non-negative objective assumption in social networks

Published: 14 August 2024 Publication History

Abstract

In this paper, we study the budget-constrained profit maximization problem with expensive seed endorsement, a derivation of the well-studied influence maximization and profit maximization in social networks. While existing research requires the non-negativity of the objective profit function, this paper considers real-world scenarios where costs may surpass revenue. Specifically, our problem can be regarded as maximizing the difference between a non-negative submodular function and a non-negative modular function under a knapsack constraint, allowing for negative differences. To tackle this challenge, we propose two algorithms. Firstly, we employ a twin greedy and enumeration technique to design a polynomial-time algorithm with a quarter weak approximation ratio, providing a balance between computational efficiency and solution quality. Then, we incorporate a threshold decreasing technique to enhance the time complexity of the first algorithm, yielding an improved computational efficiency while maintaining a reasonable level of solution accuracy. To our knowledge, this is the first paper to study the profit maximization beyond non-negativity and to propose polynomial-time algorithms with a constant bicriteria approximation ratio.

References

[1]
Brown JJ and Reingen PH Social ties and word-of-mouth referral behavior J. Consum. Res. 1987 14 3 350-362
[2]
Morris M Epidemiology and social networks: modeling structured diffusion Sociol. Methods Res. 1993 22 1 99-126
[3]
Borodin A, Filmus Y, and Oren J Saberi A Threshold models for competitive influence in social networks Internet and Network Economics 2010 Heidelberg Springer 539-550
[4]
Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 137–146. Association for Computing Machinery (ACM), New York (2003)
[5]
Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in nearly optimal time. In: Proc. Annu. ACM SIAM Symp. Discrete Algorithms, pp. 946–957. Association for Computing Machinery, New York (2014)
[6]
Chen X, Hu X, and Wang C Approximation for the minimum cost doubly resolving set problem Theor. Comput. Sci. 2016 609 526-543
[7]
Hasan MA and Zaki MJ Aggarwal CC A survey of link prediction in social networks Social Network Data Analytics 2011 Boston Springer 243-275
[8]
Lappas, T., Terzi, E., Gunopulos, D., Mannila, H.: Finding effectors in social networks. In: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1059–1068. Association for Computing Machinery (ACM), New York (2010)
[9]
Nemhauser GL, Wolsey LA, and Fisher ML An analysis of approximations for maximizing submodular set functions-i Math. Program. 1978 14 1 265-294
[10]
Ohsaka, N., Akiba, T., Yoshida, Y., Kawarabayashi, K.: Fast and accurate influence maximization on large networks with pruned monte-carlo simulations. In: Proc. Natl. Conf. Artif. Intell., 28, pp. 138–144. AAAI, California (2014)
[11]
Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: Proc. IEEE Int. Conf. Data Min. ICDM, pp. 88–97. Institute of Electrical and Electronics Engineers Inc., New Jersey (2010)
[12]
Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Vanbriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 420–429. Association for Computing Machinery, New York (2007)
[13]
Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 199–208. Association for Computing Machinery, New York (2009)
[14]
Tang, Y., Xiao, X., Shi, Y.: Influence maximization: Near-optimal time complexity meets practical efficiency. In: Proc. ACM SIGMOD Int. Conf. Manage. Data, pp. 75–86. Association for Computing Machinery, New York (2014)
[15]
Tang, J., Tang, X., Yuan, J.: Influence maximization meets efficiency and effectiveness: a hop-based approach. In: Proc. IEEE/ACM Int. Conf. Adv. Soc. Netw. Anal. Min., ASONAM, pp. 64–71. Association for Computing Machinery, New York (2017)
[16]
Chen, W., Lin, T., Tan, Z., Zhao, M., Zhou, X.: Robust influence maximization. In: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 795–804. Association for Computing Machinery, New York (2016)
[17]
Zhang, H., Zhang, H., Kuhnle, A., Thai, M.T.: Profit maximization for multiple products in online social networks. In: Proc. IEEE INFOCOM, vol. 2016, pp. 1–9. Institute of Electrical and Electronics Engineers Inc., United States (2016)
[18]
Nguyen H and Zheng R On budgeted influence maximization in social networks IEEE J. Sel. Areas Commun. 2013 31 6 1084-1094
[19]
Lu, W., Lakshmanan, L.V.S.: Profit maximization over social networks. In: Proc. IEEE Int. Conf. Data Min. ICDM, pp. 479–488. Institute of Electrical and Electronics Engineers Inc., United States (2012)
[20]
Tang J, Tang X, and Yuan J Profit maximization for viral marketing in online social networks: algorithms and analysis IEEE Trans. Knowl. Data Eng. 2018 30 6 1095-1108
[21]
Bian, S., Guo, Q., Wang, S., Yu, J.X.: Efficient algorithms for budgeted influence maximization on massive social networks. In: Proc. VLDB Endow., Vol. 13, pp. 1498–1510. Springer, VLDB Endowment (2020)
[22]
Zhang Y, Yang X, Gao S, and Yang W Budgeted profit maximization under the multiple products independent cascade model IEEE Access 2019 7 20040-20049
[23]
Guo J, Chen T, and Wu W Budgeted coupon advertisement problem: algorithm and robust analysis IEEE Trans. Netw. Sci. Eng. 2020 7 3 1966-1976
[24]
Tang, J., Tang, X., Yuan, J.: Profit maximization for viral marketing in online social networks. In: Proc. Int. Conf. Netw. Protoc. ICNP, vol. 2016, pp. 1–10. IEEE Computer Society, California (2016)
[25]
Liu B, Li X, Wang H, Fang Q, Dong J, and Wu W Profit maximization problem with coupons in social networks Theor. Comput. Sci. 2020 803 22-35
[26]
Guo J and Wu W Continuous profit maximization: a study of unconstrained DR-submodular maximization IEEE Trans. Comput. Soc. Syst. 2021 8 3 768-779
[27]
Feige U, Mirrokni VS, and Vondrák J Maximizing non-monotone submodular functions SIAM J. Comput. 2011 40 4 1133-1153
[28]
Lu, C., Yang, W., Gao, S.: Regularized non-monotone submodular maximization. Optimization, 1–27 (2023)
[29]
Sviridenko M, Vondrak J, and Ward J Optimal approximation for submodular and supermodular optimization with bounded curvature Math. Oper. Res. 2017 42 4 1197-1218
[30]
Nikolakaki, S.M., Ene, A., Terzi, E.: An efficient framework for balancing submodularity and cost. In: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1256–1266. Association for Computing Machinery, New York (2021)
[31]
Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization beyond non-negativity: Guarantees, fast algorithms, and applications. In: Int. Conf. Mach. Learn., ICML, vol. 2019, pp. 4684–4705. Association for Computing Machinery, New York (2019)
[32]
Feldman M Guess free maximization of submodular and linear sums Algorithmica 2021 83 3 853-878
[33]
Sviridenko M A note on maximizing a submodular set function subject to a knapsack constraint Oper. Res. Lett. 2004 31 1 41-43
[34]
Feldman M, Nutov Z, and Shoham E Practical budgeted submodular maximization Algorithmica 2023 85 5 1332-1371
[35]
Ene, A., Nguyen, H.L.: A nearly-linear time algorithm for submodular maximization with a knapsack constraint. In: 46th International Colloquium on Automata. Languages, and Programming (ICALP 2019), vol. 132, pp. 53–15312. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2019)
[36]
Gong S, Nong Q, Bao S, Fang Q, and Du DZ A fast and deterministic algorithm for knapsack-constrained monotone DR-submodular maximization over an integer lattice J. Global Optim. 2023 85 15-38
[37]
Buchbinder N and Feldman M Constrained submodular maximization via a nonsymmetric technique Math. Oper. Res. 2019 44 3 988-1005
[38]
Sun X, Zhang J, Zhang S, and Zhang Z Improved deterministic algorithms for non-monotone submodular maximization Theor. Comput. Sci. 2024 984
[39]
Jin T, Yang Y, Yang R, Shi J, Huang K, and Xiao X Unconstrained submodular maximization with modular costs: tight approximation and application to profit maximization IEEE Trans. Computat. Soc. Syst. 2021 14 10 1756-1768
[40]
Goldengorin B and Ghosh D A multilevel search algorithm for the maximization of submodular functions applied to the quadratic cost partition problem J. Global Optim. 2005 32 65-82
[41]
Gu S, Gao C, Huang J, and Wu W Profit maximization in social networks and non-monotone DR-submodular maximization Theor. Comput. Sci. 2023 957
[42]
Zhang G, Tatti N, and Gionis A Ranking with submodular functions on a budget Data Min. Knowl. Disc. 2022 36 3 1197-1218

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Global Optimization
Journal of Global Optimization  Volume 90, Issue 4
Dec 2024
253 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 14 August 2024
Accepted: 07 May 2024
Received: 08 January 2024

Author Tags

  1. Social networks
  2. Profit maximization
  3. Submodular function
  4. Knapsack constraint

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media