Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Dynamic Movement Primitives: Volumetric Obstacle Avoidance Using Dynamic Potential Functions

Published: 01 April 2021 Publication History

Abstract

Obstacle avoidance for Dynamic Movement Primitives (DMPs) is still a challenging problem. In our previous work, we proposed a framework for obstacle avoidance based on superquadric potential functions to represent volumes. In this work, we extend our previous work to include the velocity of the system in the definition of the potential. Our formulations guarantee smoother behavior with respect to state-of-the-art point-like methods. Moreover, our new formulation allows obtaining a smoother behavior in proximity of the obstacle than when using a static (i.e. velocity independent) potential. We validate our framework for obstacle avoidance in a simulated multi-robot scenario and with different real robots: a pick-and-place task for an industrial manipulator and a surgical robot to show scalability; and navigation with a mobile robot in a dynamic environment.

References

[1]
Albrecht, S., Ramirez-Amaro, K., Ruiz-Ugalde, F., Weikersdorfer, D., Leibold, M., Ulbrich, M., Beetz, M.: Imitating human reaching motions using physically inspired optimization principles. In: 2011 11th IEEE-RAS International Conference on Humanoid Robots, pp 602–607. IEEE (2011)
[2]
Beeson, P., Ames, B.: Trac-Ik: An open-source library for improved solving of generic inverse kinematics. In: 2015 IEEE-RAS 15Th International Conference on Humanoid Robots (Humanoids), pp 928–935. IEEE (2015)
[3]
Duan, J., Ou, Y., Hu, J., Wang, Z., Jin, S., Xu, C.: Fast and stable learning of dynamical systems based on extreme learning machine. IEEE Trans Syst Man Cybern. Syst. (99) 1–11 (2017)
[4]
Fahimi F, Nataraj C, and Ashrafiuon H Real-time obstacle avoidance for multiple mobile robots Robotica 2009 27 2 189
[5]
Fiorini P and Shiller Z Motion planning in dynamic environments using velocity obstacles Int. J. Robot. Res. 1998 17 7 760-772
[6]
Gams A, Nemec B, Ijspeert AJ, and Ude A Coupling movement primitives: Interaction with the environment and bimanual tasks IEEE Trans. Robot. 2014 30 4 816-830
[7]
Gasparetto A and Zanotto V A new method for smooth trajectory planning of robot manipulators Mechan. Machine Theory 2007 42 4 455-471
[8]
Ginesi, M., Meli, D., Calanca, A., Dall’Alba, D., Sansonetto, N., Fiorini, P.: Dynamic movement primitives: Volumetric obstacle avoidance. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp 234–239 (2019),
[9]
Ginesi, M., Sansonetto, N., Fiorini, P.: Overcoming some drawbacks of dynamic movement primitives. arXiv:1908.10608 (2019)
[10]
Hoffmann, H., Pastor, P., Park, D.H., Schaal, S.: Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance. In: Robotics and Automation, 2009. ICRA’09. IEEE International Conference On, pp 2587–2592. IEEE (2009)
[11]
Huang GB, Zhu QY, and Siew CK Extreme learning machine: Theory and applications Neurocomputing 2006 70 1-3 489-501
[12]
Huang, R., Cheng, H., Guo, H., Chen, Q., Lin, X.: Hierarchical Interactive Learning for a Human-Powered Augmentation Lower Exoskeleton. In: Robotics and Automation (ICRA), 2016 IEEE International Conference On, pp 257–263. IEEE (2016)
[13]
Ijspeert AJ, Nakanishi J, Hoffmann H, Pastor P, and Schaal S Dynamical movement primitives: Learning attractor models for motor behaviors Neural computation 2013 25 2 328-373
[14]
Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference On, vol. 2, pp 1398–1403. IEEE (2002)
[15]
Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning motor primitives. In: Advances in Neural Information Processing Systems, pp 1547–1554 (2003)
[16]
Joshi, R.P., Koganti, N., Shibata, T.: Robotic cloth manipulation for clothing assistance task using dynamic movement primitives. In: Proceedings of the Advances in Robotics, p 14. ACM (2017)
[17]
Khansari-Zadeh SM and Billard A Learning stable nonlinear dynamical systems with gaussian mixture models IEEE Trans. Robot. 2011 27 5 943-957
[18]
Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp 500–505. IEEE (1985)
[19]
Khosla, P., Volpe, R.: Superquadric artificial potentials for obstacle avoidance and approach. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation, pp 1778–1784. IEEE (1988)
[20]
Lin C, Chang P, and Luh J Formulation and optimization of cubic polynomial joint trajectories for industrial robots IEEE Trans. Autom. Control 1983 28 12 1066-1074
[21]
Magid, E., Keren, D., Rivlin, E., Yavneh, I.: Spline-based robot navigation. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference On, pp 2296–2301. IEEE (2006)
[22]
Matsubara, T., Hyon, S.H., Morimoto, J.: Learning stylistic dynamic movement primitives from multiple demonstrations. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference On, pp 1277–1283. Citeseer (2010)
[23]
Park, D.H., Hoffmann, H., Pastor, P., Schaal, S.: Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields. In: Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS International Conference On, pp 91–98. IEEE (2008)
[24]
Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills by learning from demonstration. In: Robotics and Automation, 2009. ICRA’09. IEEE International Conference On, pp 763–768. IEEE (2009)
[25]
Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.: Towards associative skill memories. In: Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International Conference On, pp 309–315. IEEE (2012)
[26]
Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.: Online movement adaptation based on previous sensor experiences. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 365–371 (2011)
[27]
Perdereau V, Passi C, and Drouin M Real-time control of redundant robotic manipulators for mobile obstacle avoidance Robot. Auton. Syst. 2002 41 1 41-59
[28]
Rai, A., Meier, F., Ijspeert, A., Schaal, S.: Learning coupling terms for obstacle avoidance. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp 512–518. IEEE (2014)
[29]
Rai, A., Sutanto, G., Schaal, S., Meier, F.: Learning feedback terms for reactive planning and control. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 2184–2191. IEEE (2017)
[30]
Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: Chomp: Gradient optimization techniques for efficient motion planning. In: Robotics and Automation, 2009. ICRA’09. IEEE International Conference On, pp 489–494. IEEE (2009)
[31]
Rezaee, H., Abdollahi, F.: Adaptive artificial potential field approach for obstacle avoidance of unmanned aircrafts. In: 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp 1–6. IEEE (2012)
[32]
Rimon E and Koditschek DE Exact robot navigation using artificial potential functions IEEE Trans. Robot. Autom. 1992 8 5 501-518
[33]
Roberti, A., Piccinelli, N., Meli, D., Fiorini, P.: Rigid 3d calibration in a robotic surgery scenario. Hamlyn Symposium on Medical Robotics (HSMR) in submission (2020)
[34]
Rohmer, E., Singh, S.P.N., Freese, M.: Coppeliasim (Formerly V-Rep): A versatile and scalable robot simulation framework. In: Proc. of The International Conference on Intelligent Robots and Systems (IROS) www.coppeliarobotics.com (2013)
[35]
Saveriano, M., Franzel, F., Lee, D.: Merging position and orientation motion primitives. In: International Conference on Robotics and Automation (ICRA), 2019 (2019)
[36]
Schaal, S.: Dynamic movement primitives-a framework for motor control in humans and humanoid robotics. In: Adaptive Motion of Animals and Machines, pp 261–280. Springer (2006)
[37]
Sutanto, G., Su, Z., Schaal, S., Meier, F.: Learning sensor feedback models from demonstrations via phase-modulated neural networks. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp 1142–1149. IEEE (2018)
[38]
Ude A, Gams A, Asfour T, and Morimoto J Task-specific generalization of discrete and periodic dynamic movement primitives IEEE Trans. Robot. 2010 26 5 800-815
[39]
Ude, A., Nemec, B., Petrić, T., Morimoto, J.: Orientation in cartesian space dynamic movement primitives. In: Robotics and Automation (ICRA), 2014 IEEE International Conference On, pp 2997–3004. IEEE (2014)
[40]
Volpe, R.: Real and artificial forces in the control of manipulators: theory and experiments. Ph.D. thesis, PhD thesis, Carnegie Mellon University Department of Physics (1990)
[41]
Volpe R and Khosla P Manipulator control with superquadric artificial potential functions: Theory and experiments IEEE Trans Syst Man Cybern 1990 20 6 1423-1436
[42]
Wang, R., Wu, Y., Chan, W.L., Tee, K.P.: Dynamic movement primitives plus: For enhanced reproduction quality and efficient trajectory modification using truncated kernels and local biases. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference On, pp 3765–3771. IEEE (2016)
[43]
Yan Z, Jouandeau N, and Cherif AA A survey and analysis of multi-robot coordination Int. J. Adv. Robot. Syst. 2013 10 12 399
[44]
Zhang, W., Rodríguez-seda, E.J., Deka, S.A., Amrouche, M., Hou, D., Stipanović, D.M., Leitmann, G.: Avoidance control with relative velocity information for lagrangian dynamics. J. Intell. Robot. Syst. 1–16 (2019)

Cited By

View all
  • (2024)Dynamic Via-points and Improved Spatial Generalization for Online Trajectory Generation with Dynamic Movement PrimitivesJournal of Intelligent and Robotic Systems10.1007/s10846-024-02051-0110:1Online publication date: 29-Jan-2024
  • (2023)Hierarchical Real-Time Optimal Planning of Collision-Free Trajectories of Collaborative RobotsJournal of Intelligent and Robotic Systems10.1007/s10846-023-01848-9107:4Online publication date: 21-Apr-2023
  • (2023)Imitation-based Path Planning and Nonlinear Model Predictive Control of a Multi-Section Continuum RobotsJournal of Intelligent and Robotic Systems10.1007/s10846-023-01811-8108:1Online publication date: 17-May-2023
  • Show More Cited By

Index Terms

  1. Dynamic Movement Primitives: Volumetric Obstacle Avoidance Using Dynamic Potential Functions
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Intelligent and Robotic Systems
    Journal of Intelligent and Robotic Systems  Volume 101, Issue 4
    Apr 2021
    316 pages

    Publisher

    Kluwer Academic Publishers

    United States

    Publication History

    Published: 01 April 2021
    Accepted: 08 February 2021
    Received: 01 July 2020

    Author Tags

    1. Obstacle avoidance
    2. Dynamic movement primitives
    3. Learning from demonstration

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Dynamic Via-points and Improved Spatial Generalization for Online Trajectory Generation with Dynamic Movement PrimitivesJournal of Intelligent and Robotic Systems10.1007/s10846-024-02051-0110:1Online publication date: 29-Jan-2024
    • (2023)Hierarchical Real-Time Optimal Planning of Collision-Free Trajectories of Collaborative RobotsJournal of Intelligent and Robotic Systems10.1007/s10846-023-01848-9107:4Online publication date: 21-Apr-2023
    • (2023)Imitation-based Path Planning and Nonlinear Model Predictive Control of a Multi-Section Continuum RobotsJournal of Intelligent and Robotic Systems10.1007/s10846-023-01811-8108:1Online publication date: 17-May-2023
    • (2021)Overcoming some drawbacks of Dynamic Movement PrimitivesRobotics and Autonomous Systems10.1016/j.robot.2021.103844144:COnline publication date: 1-Oct-2021

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media