Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Multi-objective modified differential evolution algorithm with archive-base mutation for solving multi-objective $$p$$p-xylene oxidation process

Published: 01 January 2018 Publication History

Abstract

Maximizing the diversity of the obtained objective vectors and increasing the convergence speed to the true Pareto front are two important issues in the design of multi-objective evolutionary algorithms (MOEAs). To solve complex multi-objective optimization problems (MOPs), a multi-objective modified differential evolution algorithm with archive-base mutation (MOMDE-AM) is proposed. In MOMDE-AM, with the purpose of reducing the loss of population evolution information, a modified mutation strategy with archive is introduced, which could utilize several useful inferior solutions and provide promising direction information toward the true Pareto front. The performance of MOMDE-AM is compared with five other MOEAs on five bi-objective and five tri-objective optimization problems. The simulation and statistical analysis results indicate that the overall performance of MOMDE-AM is better than those of the compared algorithms on these test functions. Finally, MOMDE-AM is used to optimize ten operation conditions of the $$p$$p-xylene oxidation reaction process; the results show that MOMDE-AM is an effective and efficient optimization tool for solving actual MOPs.

References

[1]
Abbass, H. A. (2002). The self-adaptive pareto differential evolution algorithm. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC'02. 2002 (Vol. 1, pp. 831-836).
[2]
Abbass, H. A., Sarker, R., & Newton, C. (2001). PDE: A Pareto-frontier differential evolution approach for multi-objective optimization problems. In Proceedings of the 2001 Congress on Evolutionary Computation, (Vol. 2, pp. 971-978).
[3]
Ali, M., Siarry, P., & Pant, M. (2012). An efficient differential evolution based algorithm for solving multi-objective optimization problems. European Journal of Operational Research, 217(2), 404-416.
[4]
Cao, G., Pisu, M., & Morbidelli, M. (1994). A lumped kinetic model for liquid-phase catalytic oxidation of p-xylene to terephthalic acid. Chemical Engineering Science, 49(24), 5775-5788.
[5]
Cao, G., Servida, A., Pisu, M., & Morbidelli, M. (1994). Kinetics of p-xylene liquid-phase catalytic oxidation. AIChE Journal, 40(7), 1156-1166.
[6]
Chen, X., Du, W., & Qian, F. (2014). Multi-objective differential evolution with ranking-based mutation operator and its application in chemical process optimization. Chemometrics and Intelligent Laboratory Systems, 136, 85-96.
[7]
Chen, Y., Fulton, J. L., & Partenheimer, W. (2005). The structure of the homogeneous oxidation catalyst, Mn (II)(Br-1) x, in supercritical water: An X-ray absorption fine-structure study. Journal of the American Chemical Society, 127(40), 14085-14093.
[8]
Cheng, Y., Li, X., Wang, L., & Wang, Q. (2006). Optimum ratio of Co/Mn in the liquid-phase catalytic oxidation of p-xylene to terephthalic acid. Industrial and Engineering Chemistry Research, 45(12), 4156-4162.
[9]
Cincotti, A., Orrù, R., & Cao, G. (1999). Kinetics and related engineering aspects of catalytic liquid-phase oxidation of p-xylene to terephthalic acid. Catalysis Today, 52(2), 331-347.
[10]
Cincotti, A., Orru, R., Broi, A., & Cao, G. (1997). Effect of catalyst concentration and simulation of precipitation processes on liquid-phase catalytic oxidation of p-xylene to terephthalic acid. Chemical Engineering Science, 52(21), 4205-4213.
[11]
Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256-279.
[12]
Coello, C. A. C., Van Veldhuizen, D. A., & Lamont, G. B. (2002). Evolutionary algorithms for solving multi-objective problems (Vol. 242). Berlin: Springer.
[13]
Coello Coello, C.A. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Transactions on Computational Intelligence Magazine, 1(1), 28-36.
[14]
Daneshyari, M., & Yen, G. G. (2011). Cultural-based multiobjective particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41(2), 553-567.
[15]
Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4-31.
[16]
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). New York: Wiley.
[17]
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
[18]
Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002). Scalable multi-objective optimization test problems. In Proceedings of the Congress on Evolutionary Computation (CEC-2002), (Honolulu, USA), (pp. 825-830): Proceedings of the Congress on Evolutionary Computation (CEC-2002), (Honolulu, USA).
[19]
Fan, Q., & Yan, X. (2015). Differential evolution algorithm with self-adaptive strategy and control parameters for P-xylene oxidation process optimization. Soft Computing, 19(5), 1363-1391.
[20]
Fonseca, C. M., & Fleming, P. J. (1995). An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1), 1-16.
[21]
Fonseca, C. M., & Fleming, P. J. (1998). Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 28(1), 26-37.
[22]
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200), 675-701.
[23]
Geng, D.-Z., Chen, X., Shao, Z.-J., & Qian, J.-X. (2006). Interface between MATLAB and Aspen Plus based on COM technology and its advanced application. Control and Instruments in Chemical Industry, 33(3), 30.
[24]
Hong, H., Wenli, D., Feng, Q., & Weimin, Z. (2010). Operation condition optimization of p-xylene oxidation reaction process based on a fuzzy adaptive immune algorithm. Industrial and Engineering Chemistry Research, 49(12), 5683-5693.
[25]
Jamali, A., Khaleghi, E., Gholaminezhad, I., Nariman-Zadeh, N., Gholaminia, B., & Jamal-Omidi, A. (2014). Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data. Journal of Intelligent Manufacturing.
[26]
Kenigsberg, T., Ariko, N., & Agabekov, V. (1995). Effect of catalyst composition on decreasing of CO2 and CO formation in synthesis of aromatic acids. Energy Conversion and Management, 36(6), 677-680.
[27]
Kleerebezem, R., & Lettinga, G. (2000). High-rate anaerobic treatment of purified terephthalic acid wastewater. Water Science and Technology, 42(5-6), 259-268.
[28]
Kukkonen, S., & Lampinen, J. (2004). An extension of generalized differential evolution for multi-objective optimization with constraints. In Parallel Problem Solving from Nature-PPSN VIII (pp. 752-761). Springer.
[29]
Kukkonen, S., & Lampinen, J. (2005). GDE3: The third evolution step of generalized differential evolution. In Proceedings of the 2001 Congress on Evolutionary Computation, (Vol. 1, pp. 443-450).
[30]
Li, H., & Zhang, Q. (2009). Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, 13(2), 284-302.
[31]
Madavan, N. K. (2002). Multiobjective optimization using a Pareto differential evolution approach. In Proceedings of the World on Congress on Computational Intelligence, (Vol. 2, pp. 1145-1150).
[32]
Mandli, A. R., & Modak, J. M. (2012). Evolutionary algorithm for the determination of optimal mode of bioreactor operation. Industrial and Engineering Chemistry Research, 51(4), 1796-1808.
[33]
Miettinen, K. (1999). Nonlinear multiobjective optimization (Vol. 12). Berlin: Springer.
[34]
Mu, S., Su, H., Gu, Y., & Chu, J. (2003). Multi-objective optimization of industrial purified terephthalic acid oxidation process. Chinese Journal of Chemical Engineering, 11(5), 536-541.
[35]
Partenheimer, W. (1995). Methodology and scope of metal/bromide autoxidation of hydrocarbons. Catalysis Today, 23(2), 69-158.
[36]
Ray, T., Tai, K., & Seow, C. (2001). An evolutionary algorithm for multiobjective optimization. Engineering Optimization, 33(3), 399-424.
[37]
Renon, H., & Prausnitz, J. M. (1968). Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal, 14(1), 135-144.
[38]
Robi¿, T., & Filipi¿, B. (2005). DEMO: Differential evolution for multiobjective optimization. In Evolutionary Multi-Criterion Optimization (pp. 520-533). Springer.
[39]
Santana-Quintero, L. V., Hernández-Díaz, A. G., Molina, J., Coello Coello, C. A., & Caballero, R. (2010). DEMORS: A hybrid multiobjective optimization algorithm using differential evolution and rough set theory for constrained problems. Computers and Operations Research, 37(3), 470-480.
[40]
Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the 1st international Conference on GeneticAlgorithms (pp. 93-100). L. Erlbaum Associates Inc.
[41]
Sharma, S., & Rangaiah, G. P. (2013). An improved multi-objective differential evolution with a termination criterion for optimizing chemical processes. Computers and Chemical Engineering, 56, 155-173.
[42]
Storn, R., & Price, K. (1995). Differential evolution--A simple and efficient adaptive scheme for global optimization over continuous spaces. Berkeley: ICSI.
[43]
Storn, R., & Price, K. (1997). Differential evolution--A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341-359.
[44]
Storn, R., Price, K., & Lampinen, J. (2005). Differential evolution--A practical approach to global optimization. Berlin: Springer.
[45]
Suman, B., Hoda, N., & Jha, S. (2010). Orthogonal simulated annealing for multiobjective optimization. Computers and Chemical Engineering, 34(10), 1618-1631.
[46]
Sun, W., Pan, Y., Zhao, L., & Zhou, X. (2008). Simplified free-radical reaction Kinetics for p-xylene oxidation to terephthalic acid. Chemical Engineering and Technology, 31(10), 1402-1409.
[47]
Triki, H., Mellouli, A., & Masmoudi, F. (2014). A multi-objective genetic algorithm for assembly line resource assignment and balancing problem of type 2 (ALRABP-2). Journal of Intelligent Manufacturing.
[48]
Van Veldhuizen, D. A., & Lamont, G. B. (1998). Multiobjective evolutionary algorithm research: A history and analysis. Technical Report TR-98-03, Wright-Patterson AFB, Ohio: Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology.
[49]
Wang, X., & Tang, L. (2013). Multiobjective operation optimization of naphtha pyrolysis process using parallel differential evolution. Industrial and Engineering Chemistry Research, 52(40), 14415- 14428.
[50]
Wang, Y.-N., Wu, L.-H., & Yuan, X.-F. (2010). Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure. SoftComputing, 14(3), 193-209.
[51]
Wang, Y., & Zeng, J.-C. (2013). A multi-objective artificial physics optimization algorithm based on ranks of individuals. Soft Computing, 17(6), 939-952.
[52]
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1(6), 80-83.
[53]
Yan, X., Yu, J., & Qian, F. (2005). Development of an artifical neural network model for combustion reaction in p-xylene oxidation reactor. Polyester Industry, 1, 004.
[54]
Yan, X., Du, W., & Qian, F. (2004). Development of a kinetic model for industrial oxidation of p-xylene by RBF-PLS and CCA. AIChE Journal, 50(6), 1169-1176.
[55]
Yang, S., Li, M., Liu, X., & Zheng, J. (2013). A grid-based evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 17(5), 721-736.
[56]
Zhang, J., & Sanderson, A. C. (2008). Self-adaptive multi-objective differential evolution with direction information provided by archived inferior solutions. In Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on (pp. 2801-2810): IEEE.
[57]
Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712-731.
[58]
Zhang, Y., Gong, D.-W., & Jiang, Y.-N. (2009). Barebones particle swarm for multi-objective optimisation problems. International Journal of Innovative Computing and Applications, 2(2), 86-99.
[59]
Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2), 173-195.
[60]
Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK).
[61]
Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257-271.
[62]
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117-132.

Cited By

View all
  • (2024)MOAAA/D: a decomposition-based novel algorithm and a structural design applicationNeural Computing and Applications10.1007/s00521-024-09746-336:28(17345-17374)Online publication date: 1-Oct-2024
  • (2024)A hybrid forecasting system using convolutional-based extreme learning with extended elephant herd optimization for time-series predictionSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-023-09499-628:11-12(7093-7124)Online publication date: 1-Jun-2024
  • (2022)Fusion of multi-modality biomedical images using deep neural networksSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07047-226:16(8025-8036)Online publication date: 1-Aug-2022

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Intelligent Manufacturing
Journal of Intelligent Manufacturing  Volume 29, Issue 1
January 2018
251 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 January 2018

Author Tags

  1. $$p$$p-Xylene oxidation reaction process
  2. Differential evolution
  3. Evolutionary algorithms
  4. Multi-objective optimization
  5. Pareto dominance

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)MOAAA/D: a decomposition-based novel algorithm and a structural design applicationNeural Computing and Applications10.1007/s00521-024-09746-336:28(17345-17374)Online publication date: 1-Oct-2024
  • (2024)A hybrid forecasting system using convolutional-based extreme learning with extended elephant herd optimization for time-series predictionSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-023-09499-628:11-12(7093-7124)Online publication date: 1-Jun-2024
  • (2022)Fusion of multi-modality biomedical images using deep neural networksSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07047-226:16(8025-8036)Online publication date: 1-Aug-2022

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media