Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Spoken language identification based on optimised genetic algorithm–extreme learning machine approach

Published: 01 September 2019 Publication History

Abstract

The determination and classification of a recognized spoken language based on certain contents and datasets is known as the process of language identification (LID). The common process in carrying out LID entails the mandatory processing of data which enables the extraction of the necessary features for the process. The extraction involves a mature process whereby the development of the standard LID features have been conducted much earlier by means of a mel-frequency cepstral coefficients, shifted delta cepstral, Gaussian mixture model and i-vector-based framework. Despite that, improvement or rather optimisation still needs to be done on the learning process based on the extracted features so as to obtain all the knowledge embedded within them. The classification and regression analysis can benefit tremendously from the use of the extreme learning machine (ELM) which is a particularly effective and useful learning model for training a single-hidden layer neural network. However, owing to the randomly selected weights embedded in the input’s hidden layers, the model’s learning process is rendered to be ineffective or not optimised in its entirety. In this study, the ELM is employed as the learning model for LID due to the standard feature extraction. In addition, this study proposes a new optimised genetic algorithm (OGA) with three different selection criteria (i.e., roulette wheel, K-tournament and random) to select the appropriate initial weights and biases of the input hidden layer of the ELM, thereby minimising the classification error and improving the general performance of the ELM for LID. Results show the excellent performance of the proposed OGA–ELM with three different selection criteria, namely, roulette wheel, K-tournament and random, with the highest accuracies of 99.50%, 100% and 99.38%, respectively.

References

[1]
Albadr, M. A. A., et al. (2018). Spoken language identification based on the enhanced self-adjusting extreme learning machine approach. PLoS ONE, 13(4), e0194770.
[2]
Albadra, M. A. A., & Tiuna, S. (2017). Extreme learning machine: A review. International Journal of Applied Engineering Research, 12(14), 4610–4623.
[3]
Andrushia, A. D., & Thangarajan, R. (2019). RTS-ELM: An approach for saliency-directed image segmentation with ripplet transform (pp. 1–13). Pattern Analysis and Applications.
[4]
Atee, H. A., et al. (2016). A novel extreme learning machine-based cryptography system. Security and Communication Networks, 9(18), 5472–5489.
[5]
Bi, C. (2010). Deterministic local alignment methods improved by a simple genetic algorithm. Neurocomputing, 73(13–15), 2394–2406.
[6]
Contreras-Bolton, C., & Parada, V. (2015). Automatic combination of operators in a genetic algorithm to solve the traveling salesman problem. PLoS ONE, 10(9), e0137724.
[7]
Deng, C., et al. (2015). Extreme learning machines: New trends and applications. Science China Information Sciences, 58(2), 1–16.
[8]
Garg, A., Gupta, V., & Jindal, M. (2014). A survey of language identification techniques and applications. Journal of Emerging Technologies in Web Intelligence, 6(4), 388–400.
[9]
Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95–99.
[10]
Hafen, R. P., & Henry, M. J. (2012). Speech information retrieval: A review. Multimedia Systems, 18(6), 499–518.
[11]
Han, K., Yu, D., & Tashev, I. (2014). Speech emotion recognition using deep neural network and extreme learning machine. In Fifteenth annual conference of the international speech communication association.
[12]
Holland, J. H. (1975). Adaption in natural and artificial systems. An introductory analysis with application to biology, control and artificial intelligence. Ann Arbor: University of Michigan Press.
[13]
Huang, G.-B. (2014). An insight into extreme learning machines: Random neurons, random features and kernels. Cognitive Computation, 6(3), 376–390.
[14]
Huang, G.-B., Chen, L., & Siew, C. K. (2006a). Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17(4), 879–892.
[15]
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006b). Extreme learning machine: Theory and applications. Neurocomputing, 70(1), 489–501.
[16]
Huang, G.-B., et al. (2012). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 513–529.
[17]
Huang, G., et al. (2014). Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417.
[18]
Iosifidis, A., Tefas, A., & Pitas, I. (2016). Graph embedded extreme learning machine. IEEE Transactions on Cybernetics, 46(1), 311–324.
[19]
Jiang, B., et al. (2014). Deep bottleneck features for spoken language identification. PLoS ONE, 9(7), e100795.
[20]
Lan, Y., et al. (2013). An extreme learning machine approach for speaker recognition. Neural Computing and Applications, 22(3–4), 417–425.
[21]
Lefebvre, G., & Cumin, J. (2016). Recognizing human actions based on extreme learning machines. In 11th international joint conference on computer vision, imaging and computer graphics theory and applications.
[22]
Li, J., et al. (2015). LSTM time and frequency recurrence for automatic speech recognition. In 2015 IEEE workshop on automatic speech recognition and understanding (ASRU). IEEE.
[23]
Liang, N.-Y., et al. (2006). A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 17(6), 1411–1423.
[24]
Liu, B., et al. (2016). Manifold regularized extreme learning machine. Neural Computing and Applications, 27(2), 255–269.
[25]
Michalewicz, Z., & Hartley, S. J. (1996). Genetic algorithms + data structures = evolution programs. Mathematical Intelligencer, 18(3), 71.
[26]
Mohamed, M. H. (2011). Rules extraction from constructively trained neural networks based on genetic algorithms. Neurocomputing, 74(17), 3180–3192.
[27]
Nayak, P., et al. (2016). Comparison of modified teaching–learning-based optimization and extreme learning machine for classification of multiple power signal disturbances. Neural Computing and Applications, 27(7), 2107–2122.
[28]
Niu, P., et al. (2016). A kind of parameters self-adjusting extreme learning machine. Neural Processing Letters, 44(3), 813–830.
[29]
Padmanabhan, S. A., & Kanchikere, J. (2019). An efficient face recognition system based on hybrid optimized KELM (pp. 1–21). Multimedia Tools and Applications.
[30]
Pal, M., Maxwell, A. E., & Warner, T. A. (2013). Kernel-based extreme learning machine for remote-sensing image classification. Remote Sensing Letters, 4(9), 853–862.
[31]
Rujirakul, K., & So-In, C. (2018) Histogram equalized deep PCA with ELM classification for expressive face recognition. In 2018 international workshop on advanced image technology (IWAIT). IEEE.
[32]
Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Australasian joint conference on artificial intelligence. Berlin: Springer.
[33]
Wang, Y., Cao, F., & Yuan, Y. (2011). A study on effectiveness of extreme learning machine. Neurocomputing, 74(16), 2483–2490.
[34]
Xiang, J., et al. (2014). Using extreme learning machine for intrusion detection in a big data environment. In: Proceedings of the 2014 workshop on artificial intelligent and security workshop. ACM.
[35]
Xu, J., et al. (2015). Regularized minimum class variance extreme learning machine for language recognition. EURASIP Journal on Audio, Speech, and Music Processing, 2015(1), 22.
[36]
Yaacob, S., Muthusamy, H., & Polat, K. (2015). Improved emotion recognition using gaussian mixture model and extreme learning machine in speech and glottal signals. Mathematical Problems in Engineering. https://doi.org/10.1155/2015/394083.
[37]
Yang, Z., Zhang, T., & Zhang, D. (2016). A novel algorithm with differential evolution and coral reef optimization for extreme learning machine training. Cognitive Neurodynamics, 10(1), 73–83.
[38]
Zazo, R., et al. (2016). Language identification in short utterances using long short-term memory (LSTM) recurrent neural networks. PLoS ONE, 11(1), e0146917.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Speech Technology
International Journal of Speech Technology  Volume 22, Issue 3
Sep 2019
364 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2019

Author Tags

  1. Language identification
  2. Extreme learning machine
  3. Optimised genetic algorithm

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Pathological voice classification using MEEL features and SVM-TabNet modelSpeech Communication10.1016/j.specom.2024.103100162:COnline publication date: 1-Jul-2024
  • (2024)Trilingual conversational intent decoding for response retrievalKnowledge and Information Systems10.1007/s10115-023-01972-w66:1(535-556)Online publication date: 1-Jan-2024
  • (2024)Online sequential extreme learning machine approach for breast cancer diagnosisNeural Computing and Applications10.1007/s00521-024-09617-x36:18(10413-10429)Online publication date: 1-Jun-2024
  • (2023)Spoken language identification using a genetic-based fusion approach to combine acoustic and universal phonetic resultsComputers and Electrical Engineering10.1016/j.compeleceng.2022.108549105:COnline publication date: 1-Jan-2023
  • (2023)Grey wolf optimization-extreme learning machine for automatic spoken language identificationMultimedia Tools and Applications10.1007/s11042-023-14473-382:18(27165-27191)Online publication date: 8-Feb-2023
  • (2022)Generation and Research of Online English Course Learning Evaluation Model Based on Genetic Algorithm Improved Neural Set NetworkComputational Intelligence and Neuroscience10.1155/2022/72818922022Online publication date: 1-Jan-2022
  • (2022)A review into deep learning techniques for spoken language identificationMultimedia Tools and Applications10.1007/s11042-022-13054-081:22(32593-32624)Online publication date: 1-Sep-2022
  • (2022)Speech emotion recognition using optimized genetic algorithm-extreme learning machineMultimedia Tools and Applications10.1007/s11042-022-12747-w81:17(23963-23989)Online publication date: 1-Jul-2022
  • (2022)A cooperative genetic algorithm based on extreme learning machine for data classificationSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07202-926:17(8585-8601)Online publication date: 1-Sep-2022
  • (2020)Spoken Language Identification Based on Particle Swarm Optimisation–Extreme Learning Machine ApproachCircuits, Systems, and Signal Processing10.1007/s00034-020-01388-939:9(4596-4622)Online publication date: 1-Sep-2020

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media