Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

MacWilliams extension property for arbitrary weights on linear codes over module alphabets

Published: 01 November 2022 Publication History

Abstract

The first author recently proved the extension theorem for linear codes over integer residue rings equipped with the Lee or the Euclidean weight by introducing a determinant criterion that is dual to earlier approaches. In this paper we generalize his techniques to the context of linear codes over an alphabet that is a finite pseudo-injective module with a cyclic socle and is equipped with an arbitrary weight. The main theorem is a criterion for the weight to have the extension property.

References

[1]
Arf C Untersuchungen über quadratische Formen in Körpern der Charakteristik 2 I. J. Reine Angew. Math. 1941 183 148-167
[2]
Barra A and Gluesing-Luerssen H MacWilliams extension theorems and the local-global property for codes over Frobenius rings J. Pure Appl. Algebra 2015 219 4 703-728
[3]
Bogart K, Goldberg D, and Gordon J An elementary proof of the MacWilliams theorem on equivalence of codes Inf. Control 1978 37 1 19-22
[4]
Constantinescu I.: Lineare Codes über Restklassringen ganzer Zahlen und ihre Automorphismen bezüglich einer verallgemeinerten Hamming-Metrik. Ph.D. thesis, Techniche Universität München, München (1995).
[5]
Constantinescu I and Heise W A metric for codes over residue class rings of integers Probl. Peredachi Inf. 1997 33 3 22-28
[6]
Dinh HQ and López-Permouth SR On the equivalence of codes over finite rings Appl. Algebra Eng. Commun. Comput. 2004 15 1 37-50
[7]
Dinh HQ and López-Permouth SR On the equivalence of codes over rings and modules Finite Fields Appl. 2004 10 4 615-625
[8]
Dyshko S Geometric approach to the MacWilliams extension theorem for codes over module alphabets Appl. Algebra Eng. Commun. Comput. 2017 28 4 295-309
[9]
Dyshko S When the extension property does not hold J. Algebra Appl. 2017 16 5 1750098
[10]
Dyshko S The extension theorem for Lee and Euclidean weight codes over integer residue rings Des. Codes Cryptogr. 2019 87 6 1253-1269
[11]
ElGarem N, Megahed N, and Wood JA ElGarem N The extension theorem with respect to symmetrized weight compositions Coding Theory and Applications, CIM Series in Mathematical Science 2015 Cham Springer 177
[12]
Gnilke OW, Greferath M, Honold T, Wood JA, and Zumbrägel J Leroy A, Lomp C, López-Permouth S, and Oggier F The extension theorem for bi-invariant weights over Frobenius rings and Frobenius bimodules Rings, Modules and Codes, Contemporary Mathematics 2019 Providence American Mathematical Society 117-129
[13]
Goldberg DY A generalized weight for linear codes and a Witt-MacWilliams theorem J. Comb. Theory Ser. A 1980 29 3 363-367
[14]
Greferath M Orthogonality matrices for modules over finite Frobenius rings and MacWilliams’ equivalence theorem Finite Fields Appl. 2002 8 3 323-331
[15]
Greferath M and Schmidt SE Finite-ring combinatorics and MacWilliams’s equivalence theorem J. Comb. Theory Ser. A 2000 92 1 17-28
[16]
Greferath M, Nechaev A, and Wisbauer R Finite quasi-Frobenius modules and linear codes J. Algebra Appl. 2004 3 3 247-272
[17]
Greferath M, Mc Fadden C, and Zumbrägel J Characteristics of invariant weights related to code equivalence over rings Des. Codes Cryptogr. 2013 66 1–3 145-156
[18]
Greferath M, Honold T, Mc Fadden C, Wood JA, and Zumbrägel J MacWilliams’ extension theorem for bi-invariant weights over finite principal ideal rings J. Comb. Theory Ser. A 2014 125 177-193
[19]
Hammons AR Jr, Kumar PV, Calderbank AR, Sloane NJA, and Solé P The Z4-linearity of Kerdock, Preparata, Goethals, and related codes IEEE Trans. Inf. Theory 1994 40 2 301-319
[20]
Kurakin VL, Kuzmin AS, Markov VT, Mikhalev AV, and Nechaev AA Fossorier M, Imai H, Lin S, and Poli A Linear codes and polylinear recurrences over finite rings and modules (a survey) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Honolulu, HI, 1999), Lecture Notes in Computer Science 1999 Berlin Springer 365-391
[21]
MacWilliams FJ Error-correcting codes for multiple-level transmission Bell Syst. Tech. J. 1961 40 281-308
[22]
MacWilliams F.J.: Combinatorial Problems of Elementary Abelian Groups. ProQuest LLC, Ann Arbor (1962). Thesis (Ph.D.)–Radcliffe College. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0260595
[23]
Ward HN and Wood JA Characters and the equivalence of codes J. Comb. Theory Ser. A 1996 73 2 348-352
[24]
Witt E Theorie der quadratischen Formen in beliebigen Körpern J. Reine Angew. Math. 1937 176 31-44
[25]
Wood JA Witt’s extension theorem for mod four valued quadratic forms Trans. Am. Math. Soc. 1993 336 1 445-461
[26]
Wood J.A.: Extension theorems for linear codes over finite rings. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Toulouse, 1997), Lecture Notes in Computer Science, vol. 1255, pp. 329–340. Springer, Berlin (1997)
[27]
Wood JA Duality for modules over finite rings and applications to coding theory Am. J. Math. 1999 121 3 555-575
[28]
Wood JA Mullen GL and Shiue PJ-S Weight functions and the extension theorem for linear codes over finite rings Finite Fields: Theory, Applications, and Algorithms (Waterloo, ON, 1997), Contemporary Mathematics 1999 Providence American Mathematical Society 231-243
[29]
Wood JA Code equivalence characterizes finite Frobenius rings Proc. Am. Math. Soc. 2008 136 2 699-706
[30]
Wood JA Solé P Foundations of linear codes defined over finite modules: the extension theorem and the MacWilliams identities Codes Over Rings (Ankara, 2008), Series Coding Theory Cryptology 2009 Hackensack World Science Publishing 124-190
[31]
Wood JA Two approaches to the extension problem for arbitrary weights over finite module alphabets Appl. Algebra Eng. Commun. Comput. 2020

Index Terms

  1. MacWilliams extension property for arbitrary weights on linear codes over module alphabets
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Designs, Codes and Cryptography
          Designs, Codes and Cryptography  Volume 90, Issue 11
          Nov 2022
          255 pages

          Publisher

          Kluwer Academic Publishers

          United States

          Publication History

          Published: 01 November 2022
          Accepted: 31 August 2021
          Revision received: 28 August 2021
          Received: 19 February 2021

          Author Tags

          1. Linear code
          2. Extension theorem
          3. Cyclic socle

          Author Tag

          1. Primary 94B05

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 30 Nov 2024

          Other Metrics

          Citations

          View Options

          View options

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media