We consider various aspects of the Segre variety $${\mathcal{S}:=\mathcal{S} _{1,1,1}(2)}$$ in PG(7, 2), whose stabilizer group $${\mathcal{G}_{\mathcal{S}}<{\rm GL}(8,2)}$$ has the structure $${\mathcal{N}\rtimes{\rm Sym}(3),}$$ where $${\mathcal{N} :={\rm GL}(2,2)\times{\rm GL}(2,2)\times{\rm GL} (2,2).}$$ In particular we prove that $${\mathcal{S}}$$ determines a distinguished Z 3-subgroup $${\mathcal{Z}<{\rm GL}(8,2)}$$ such that $${A\mathcal{Z}A^{-1}=\mathcal{Z},}$$ for all $${A\in\mathcal{G}_{\mathcal{S}},}$$ and in consequence $${\mathcal{S}}$$ determines a $${\mathcal{G}_{\mathcal{S}}}$$ -invariant ...