Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Entry-faithful 2-neighbour transitive codes

Published: 01 June 2016 Publication History

Abstract

We consider a code to be a subset of the vertex set of a Hamming graph. The set of $$s$$s-neighbours of a code is the set of vertices, not in the code, at distance $$s$$s from some codeword, but not distance less than $$s$$s from any codeword. A $$2$$2-neighbour transitive code is a code which admits a group $$X$$X of automorphisms which is transitive on the $$s$$s-neighbours, for $$s=1,2$$s=1,2, and transitive on the code itself. We give a classification of $$2$$2-neighbour transitive codes, with minimum distance $$\delta \geqslant 5$$ 5, for which $$X$$X acts faithfully on the set of entries of the Hamming graph.

References

[1]
Best M.R., Brouwer A.E., Macwilliams F.J., Odlyzko A.M., Sloane N.J.A.: Bounds for binary codes of length less than 25. IEEE Trans. Inf. Theory 24, 81---93 (1978).
[2]
Bochert A.: Ueber die zahl der verschiedenen werthe, die eine function gegebener buchstaben durch vertauschung derselben erlangen kann. Math. Ann. 33(4), 584---590 (1889).
[3]
Borges J., Rifà J.: On the nonexistence of completely transitive codes. IEEE Trans. Inf. Theory 46(1), 279---280 (2000).
[4]
Borges J., Rifà J.: On linear completely regular codes with covering radius $$\rho =1$$¿=1. Construction and classification. CoRR http://www.abs/0906.0550, (2009).
[5]
Borges J., Rifà J., Zinoviev V.A.: Nonexistence of completely transitive codes with error-correcting capability e > 3. IEEE Trans. Inf. Theory 47(4), 1619---1621 (2001).
[6]
Borges J., Rifà J., Zinoviev V.A.: New families of completely transitive codes and distance transitive graphs. arXiv preprint arXiv:1304.2151 (2013).
[7]
Borges J., Rifà J., Zinoviev V.A.: New families of completely regular codes and their corresponding distance regular coset graphs. Des. Codes Cryptogr. 70(1---2), 139---148 (2014).
[8]
Borges J., Rifà J., Zinoviev V.A.: On $$q$$q-ary linear completely regular codes with $$\rho = 2$$¿=2 and antipodal dual. Adv. Math. Commun. (AMC) 4(4), 567---578 (2010).
[9]
Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) {Results in Mathematics and Related Areas (3)}, vol. 18. Springer, Berlin (1989).
[10]
Cameron P.J.: Permutation Groups. London Mathematical Society Student Texts, vol. 45. Cambridge University Press, Cambridge (1999).
[11]
Conway J.H.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, Oxford (1985).
[12]
Delsarte P.: An Algebraic Approach to the Association Schemes of Coding Theory. Philips Research Reports: Supplements. N. V. Philips' Gloeilampenfabrieken (1973).
[13]
Devillers A., Giudici M., Li C.H., Pearce G., Praeger C.E.: On imprimitive rank 3 permutation groups. J. Lond. Math. Soc. 84(3), 649---669 (2011).
[14]
Dixon J.D., Mortimer B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer, New York (1996).
[15]
Gillespie, N.I.: Neighbour transitivity on codes in Hamming graphs. PhD thesis, The University of Western Australia, Perth, Australia (2011)
[16]
Gillespie N.I., Praeger C.E.: Complete transitivity of the Nordstrom---Robinson codes. arXiv e-prints arXiv:1205.3878 (2012).
[17]
Gillespie N.I., Praeger C.E.: Neighbour transitivity on codes in Hamming graphs. Des. Codes Cryptogr. 67(3), 385---393 (2013).
[18]
Gillespie N.I., Praeger C.E.: Uniqueness of certain completely regular Hadamard codes. J. Comb. Theory A 120(7), 1394---1400 (2013).
[19]
Gillespie N.I., Praeger C.E.: Characterisation of a family of neighbour transitive codes. arXiv e-prints arXiv:1405.5427 (2014).
[20]
Gillespie N.I., Giudici M., Praeger C.E.: Classification of a family of completely transitive codes. arXiv preprint arXiv:1208.0393 (2012).
[21]
Gillespie N.I., Praeger C.E.: Diagonally neighbour transitive codes and frequency permutation arrays. J. Algebr. Comb. 39(3), 733---747 (2014).
[22]
Giudici M., Praeger C.E.: Completely transitive codes in Hamming graphs. Eur. J. Comb. 20(7), 647---662 (1999).
[23]
Hall Jr. M.: Note on the Mathieu group $${M}_{12}$$M12. Arch. Math. 13(1), 334---340 (1962).
[24]
Kantor W.M.: k-Homogeneous groups. Math. Z. 124(4), 261---265 (1972).
[25]
Liebeck M.W., Praeger C.E., Saxl J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111(2), 365---383 (1987).
[26]
MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes. North-Holland Mathematical Library. North-Holland, Amsterdam (1978).
[27]
Neumaier A.: Completely regular codes. Discret. Math. 106---107, 353---360 (1992).
[28]
Praeger C.E.: The inclusion problem for finite primitive permutation groups. Proc. Lond. Math. Soc. 3(1), 68---88 (1990).
[29]
Solé P.: Completely regular codes and completely transitive codes. Discret. Math. 81(2), 193---201 (1990).
[30]
Solé P.: Completely regular codes and completely transitive codes. RR-0727, (1987). $$\langle $$¿inria-00075825$$\rangle $$¿.
[31]
Stinson D.R.: Combinatorial Designs: Construction and Analysis. Springer, New York (2004).
[32]
Todd J.A.: A combinatorial problem. J. Math. Phys. 12, 321---333 (1933).
[33]
van Tilborg H.C.: Uniformly Packed Codes. Technische Hogeschool, Eindhoven (1976).

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Designs, Codes and Cryptography
Designs, Codes and Cryptography  Volume 79, Issue 3
June 2016
230 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 June 2016

Author Tags

  1. 05E20
  2. 2-Neighbour transitive codes
  3. 20B25
  4. 68R05
  5. Automorphisms groups
  6. Completely transitive codes
  7. Hamming graph
  8. Regular codes

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media