Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Vision-based maze navigation for humanoid robots

Published: 01 February 2017 Publication History

Abstract

We present a vision-based approach for navigation of humanoid robots in networks of corridors connected through curves and junctions. The objective of the humanoid is to follow the corridors, walking as close as possible to their center to maximize motion safety, and to turn at curves and junctions. Our control algorithm is inspired by a technique originally designed for unicycle robots that we have adapted to humanoid navigation and extended to cope with the presence of turns and junctions. In addition, we prove here that the corridor following control law provides asymptotic convergence of robot heading and position to the corridor bisector even when the corridor walls are not parallel. A state transition system is designed to allow navigation in mazes of corridors, curves and T-junctions. Extensive experimental validation proves the validity and robustness of the approach.

References

[1]
Back, I., Kallio, J., & Makela, K. (2012). Enhanced map-based indoor navigation system of a humanoid robot using ultrasound measurements. Intelligent Control and Automation, 3(2), 111-116.
[2]
Baier, C., & Katoen, J. P. (2008). Principles of model checking. Cambridge, MA: MIT Press.
[3]
Cherubini, A., Chaumette, F., & Oriolo, G. (2008). An image-based visual servoing scheme for following paths with nonholonomic mobile robots. In 10th IEEE international conference on control, automation, robotics and vision (pp. 108-113).
[4]
Courty, N., Marchand, E., & Arnaldi, B. (2001). Through-the-eyes control of a virtual humanoid. In The fourteenth conference on computer animation (pp. 74-83).
[5]
Cyberbotics-Webots. (2012). Webots: Robot simulation software. http://www.cyberbotics.com.
[6]
Delfin, J., Becerra, H., & Arechavaleta, G. (2014). Visual path following using a sequence of target images and smooth robot velocities for humanoid navigation. In 14th IEEE-RAS international conference on humanoid robots (pp. 354-359).
[7]
Delgado-Galvan, J., Navarro-Ramirez, A., Nunez-Varela, J., Puente-Montejano, C., & Martinez-Perez, F. (2015). Vision-based humanoid robot navigation in a featureless environment. In J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad, J. H. Sossa-Azuela, J. A. Olvera López, & F. Famili (Eds.), Pattern recognition (Vol. 9116, pp. 169-178), Lecture Notes in Computer Science. New York: Springer.
[8]
Dune, C., Herdt, A., Stasse, O., Wieber, P. B., Yokoi, K, & Yoshida, E. (2010). Cancelling the sway motion of dynamic walking in visual servoing. In IEEE/RSJ international conference on intelligent robots and systems (pp. 3175-3180).
[9]
Dune, C., Herdt, A., Marchand, E., Stasse, O., Wieber, P. B., & Yoshida, E. (2011). Vision based control for humanoid robots. In IROS workshop on visual control of mobile robots (pp. 19-26).
[10]
Faragasso, A., Oriolo, G., Paolillo, A., & Vendittelli, M. (2013). Vision-based corridor navigation for humanoid robots. In IEEE international conference on robotics and automation (pp. 3190- 3195).
[11]
Garcia, M., Stasse, O., & Hayet, J.B. (2014). Vision-driven walking pattern generation for humanoid reactive walking. In IEEE international conference on robotics and automation (pp. 216-221).
[12]
Garcia, M., Stasse, O., Hayet, J. B., Dune, C., Esteves, C., & Laumond, J. P. (2015). Vision-guided motion primitives for humanoid reactive walking: Decoupled versus coupled approaches. The International Journal of Robotics Research, 34(4-5), 402-419.
[13]
George, L., & Mazel, A. (2013). Humanoid robot indoor navigation based on 2D bar codes: Application to the NAO robot. In 13th IEEE-RAS international conference on humanoid robots.
[14]
Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision. Cambridge: Cambridge University Press.
[15]
Ido, J., Shimizu, Y., Matsumoto, Y., & Ogasawara, T. (2009). Indoor navigation for a humanoid robot using a view sequence. The International Journal of Robotics Research, 28(2), 315-325.
[16]
Kahlil, H. K. (2001). Nonlinear systems. New York: Prentice Hall.
[17]
Kuffner, Jr. J. J., Nishiwaki, K., Kagami, S., Inaba, M., & Inoue, H. (2001). Footstep planning among obstacles for biped robots. In IEEE/RSJ international conference on intelligent robots and systems (pp. 500-505).
[18]
Laganière, R. (2011). OpenCV 2 computer vision application programming cookbook: Over 50 recipes to master this library of programming functions for real-time computer vision. Singapore: Packt Publishing Ltd.
[19]
Lutz, C., Atmanspacher, F., Hornung, A., & Bennewitz, M. (2012). Nao walking down a ramp autonomously. In IEEE/RSJ international conference on intelligent robots and systems (pp. 5169-5170).
[20]
Ma, Y., Soatto, S., Kosecka, J., & Sastry, S. S. (2003). An invitation to 3-D vision: From images to geometric models. New York: Springer.
[21]
Maier, D., Hornung, A., & Bennewitz,M. (2012). Real-time navigation in 3D environments based on depth camera data. In 12th IEEE-RAS international conference on humanoid robots (pp. 692-697).
[22]
Maier, D., Stachniss, C., & Bennewitz, M. (2013). Vision-based humanoid navigation using self-supervised obstacle detection. International Journal of Humanoid Robotics, 10(02), 1350,016.
[23]
Matsumoto, Y., Ikeda, K., Inaba, M., & Inoue, H. (2000). Exploration and navigation in corridor environment based on omni-view sequence. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1505-1510).
[24]
Mombaur, K., Truong, A., & Laumond, J. P. (2010). From human to humanoid locomotion--an inverse optimal control approach. Autonomous Robots, 28, 369-383.
[25]
Ohnishi, N., & Imiya, A. (2013). Appearance-based navigation and homing for autonomous mobile robot. Image and Vision Computing, 31(6), 511-532.
[26]
OpenCV. (2012). Open source computer vision. http://opencv.org/.
[27]
Oriolo, G., Paolillo, A., Rosa, L., & Vendittelli, M. (2013). Vision-based trajectory control for humanoid navigation. In IEEE-RAS international conference on humanoid robots (pp. 118-123).
[28]
Oriolo, G., Paolillo, A., Rosa, L., & Vendittelli, M. (2015). Humanoid odometric localization integrating kinematic, inertial and visual information. Autonomous Robots.
[29]
Park, Y., & Suh, H. (2010). Predictive visual recognition of types of structural corridor landmarks for mobile robot navigation. In 19th IEEE international symposium on robot and human interactive communication (pp. 391-396).
[30]
Sabe, K., Fukuchi, M., Gutmann, J. S., Ohashi, T., Kawamoto, K., & Yoshigahara, T. (2004). Obstacle avoidance and path planning for humanoid robots using stereo vision. In IEEE international conference on robotics and automation (pp. 592-597).
[31]
Tello Gamarra, D., Bastos-Filho, T., & Sarcinelli-Filho, M. (2005). Controlling the navigation of a mobile robot in a corridor with redundant controllers. In IEEE international conference on robotics and automation (pp. 3844-3849).
[32]
Toibero, J. M., Soria, C.M., Roberti, F., Carelli, R., & Fiorini, P. (2009). Switching visual servoing approach for stable corridor navigation. In 14th international conference on advanced robotics (pp. 1-6).
[33]
Truong, T. V. A., Flavigne, D., Pettre, J., Mombaur, K., & Laumond, J. P. (2010). Reactive synthesizing of human locomotion combining nonholonomic and holonomic behaviors. In 3rd IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics (pp. 632-637).
[34]
Vassallo, R., Schneebeli, H. J., & Santos-Victor, J. (2000). Visual servoing and appearance for navigation. Robotics and Autonomous Systems, 31(1-2), 87-97.
[35]
Wei, C., Xu, J., Wang, C., Wiggers, P., & Hindriks, K. (2014). An approach to navigation for the humanoid robot nao in domestic environments. In A. Natraj, S. Cameron, C. Melhuish, & M. Witkowski (Eds.), Towards autonomous robotic systems (pp. 298- 310), Lecture Notes in Computer Science. Berlin, Heidelberg: Springer.

Cited By

View all
  • (2018)Light-Weight Object Detection and Decision Making via Approximate Computing in Resource-Constrained Mobile Robots2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS.2018.8594200(6776-6781)Online publication date: 1-Oct-2018
  • (2018)A modular framework for model-based visual tracking using edge, texture and depth features2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS.2018.8594003(89-96)Online publication date: 1-Oct-2018
  • (2018)Reduction of the uncertainty in feature trackingApplied Intelligence10.1007/s10489-018-1236-948:12(4626-4645)Online publication date: 1-Dec-2018

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Autonomous Robots
Autonomous Robots  Volume 41, Issue 2
February 2017
231 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 February 2017

Author Tags

  1. Humanoid robots
  2. Vision-based navigation
  3. Visual control

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2018)Light-Weight Object Detection and Decision Making via Approximate Computing in Resource-Constrained Mobile Robots2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS.2018.8594200(6776-6781)Online publication date: 1-Oct-2018
  • (2018)A modular framework for model-based visual tracking using edge, texture and depth features2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS.2018.8594003(89-96)Online publication date: 1-Oct-2018
  • (2018)Reduction of the uncertainty in feature trackingApplied Intelligence10.1007/s10489-018-1236-948:12(4626-4645)Online publication date: 1-Dec-2018

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media