Nothing Special   »   [go: up one dir, main page]

skip to main content
article

A new multi-criteria optimization strategy for shared control in wheelchair assisted navigation

Published: 01 February 2011 Publication History

Abstract

In todays aging society, many people require mobility assistance, that can be provided by robotized assistive wheelchairs with a certain degree of autonomy when manual control is unfeasible due to disability.
Robot wheelchairs, though, are not supposed to be completely in control because lack of human intervention may lead to loss of residual capabilities and frustration. Most of these systems rely on shared control, which typically consists of swapping control from human to robot when needed. However, this means that persons never deal with situations they find difficult. We propose a new shared control approach to allow constant cooperation between humans and robots, so that assistance may be adapted to the user's skills. Our proposal is based on the reactive navigation paradigm, where robot and human commands become different goals in a Potential Field. Our main novelty is that human and robot attractors are weighted by their respective local efficiencies at each time instant. This produces an emergent behavior that combines both inputs in an efficient, safe and smooth way and is dynamically adapted to the user's needs. The proposed control scheme has been successfully tested at hospital Fondazione Santa Lucia (FSL) in Rome with several volunteers presenting different disabilities.

References

[1]
Aigner, P., & McCarragher, B. J. (2000). Modeling and constraining human interactions in shared control utilizing a discrete event framework. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 30(3), 369-379.
[2]
Albus, J. S. (1991). Outline for a theory of intelligence. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 473-509.
[3]
Bonasso, R. P. (1991). Integrating reaction plans and layered competences through synchronous control. In Proceedings of the international joint conference on artificial intelligence (pp. 1225- 1233).
[4]
Borenstein, J., Everett, B., & Feng, L. (1996). Navigating mobile robots: sensors and techniques. Wellesley: A.K. Peters.
[5]
Bourhis, G., & Agostini, Y. (1998). The vahm robotized wheelchair: system architecture and human-machine interaction. Journal of Intelligent Robotic Systems, 22(1), 39-50.
[6]
Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 14-23.
[7]
Bruemmer, D. J., Few, D. A., Boring, R. L., Marble, J. L., Walton, M. C., & Nielsen, C. W. (2005). Shared understanding for collaborative control. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 25(4), 494-504.
[8]
Ciole, R., & Trusko, B. (1999). In HealthCare 2020: challenges for the millennium (pp. 34-38).
[9]
Clarke, D., Yen, S., Kondraske, G. V., Khoury, G. J., & Maxwelle, K. J. (1991). Telerobotic network workstation for system performance and operator workload monitoring (Tech. Rep. 91-013R). NASA JSC, Houston, TX.
[10]
Connell, J. H., & Viola, P. (1990). Cooperative control of a semi-autonomous mobile robot. In Proc. of the IEEE conference on robotics and automation (pp. 1118-1121). Cincinnati, USA.
[11]
Cooperstock, J., Pineau, J., Precup, D., Atrash, A., Jaulmes, R., Kaplow, R., Lin, N., Prahacs, C., Villemure, J., & Yamani, H. (2007). Smartwheeler: a robotic wheelchair test-bed for investigating new models of human-robot interaction. In Proc. of the IEEE conference on intell. robots and systems (IROS). San Diego, USA.
[12]
Cortés, U., Annicchiarico, R., Campana, F., Vázquez-Salceda, J., Urdiales, C., Cañamero, L., López, M., Sánchez-Marré, M., Vincenzo, S. D., & Caltagirone, C. (2004). Intelligenza artificiale in medicina: progetto di una piattaforma mobile inserita in un ambiente intelligente per li assistenza ai disabili e agli anziani. Recenti Progressi in Medicina, 95(4), 190-195.
[13]
Cortés, U., Urdiales, C., Annicchiarico, R., Barrue, C., Martinez, A. B., & Caltagirone, C. (2007). Assistive wheelchair navigation: a cognitive view (pp. 165-187). Berlin: Springer.
[14]
Crisman, J., & Cleary, M. (1998). Progress on the deictic controlled wheelchair (pp. 137-149). Berlin: Springer.
[15]
Crum, R., Anthony, J., Bassett, S., & Folstein, M. (1993). Population-based norms for the mini-mental state examination by age and educational level. Journal of the American Medical Association, 269(18), 2386-2391.
[16]
Darley, V. (1994). Emergent phenomena and complexity. Artificial life IV. Proceedings of the fourth international workshop on the synthesis and simulation of living systems (pp. 411-416). Cambridge: MIT Press.
[17]
Demers, L., & Weiss-Lambrou, R. (2002). The assessment of assistive technology outcomes, effects and costs. Journal Technology and Disability, 14(3), 101-105.
[18]
Detriche, J., & Lesigne, B. (1990). Robotic system master. In European conf. on the avancenient of rehabilitation technology (pp. 12-15). Maastricht: Pays-Bas.
[19]
Dorais, G. A., Bonasso, R. P., Kortenkamp, D., Pell, B., & Schreck-enghost, D. (1998). Adjustable autonomy for human-centered autonomous systems on Mars. In First int. conf. of the Mars Society.
[20]
Ferguson, G., Allen, J., & Miller, B. (1996). Trains 95: towards a mixed initiative planning assistant. In Proc. of the third conf. on artificial intelligence planning systems (pp. 70-77).
[21]
Fong, T., Thorpe, C., & Baur, C. (2003b). Robot, asker of questions. Robotics and Autonomous Systems, 42, 235-243.
[22]
Fong, T., Thorpe, C., & Baur, C. (2003a). Multi-robot remote driving with collaborative control. IEEE Transactions on Industrial Electronics, 50(4), 699-704.
[23]
Fox, D., Burgard, W., Thrun, S., & Cremers, A. (1998). A hybrid collision avoidance method for mobile robots. In Proc. of IEEE int. conf. on robotics and automation (pp. 1238-1243).
[24]
Frese, U., Larsson, P., & Duckett, T. (2005). A multigrid algorithm for simultaneous localization and mapping. IEEE Transactions on Robotics, 21(2), 1-12.
[25]
Galan, F., Nuttin, M., Lew, E., Ferrez, P. W., Vanacker, G., Philips, J., & Millan, J. R., (2008). A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clinical Neurophysiology.
[26]
Gomi, T., & Griffith, A. (1998). Developing intelligent wheelchairs for the handicapped (pp. 150-178). Berlin: Springer.
[27]
Gunderson, J. P., & Martin, W. N. (1999). Effects of uncertainty on variable autonomy in maintenence robots. In Proc. of agents'99, workshop on autonomy control software.
[28]
Guralnik, J.M., & Simonsick, E. M. (1993). Physical disability in older americans. Journal of Gerontology, 48, 3-10.
[29]
Hexmoor, H., Castelfranchi, C., & Falcone, R. (Eds.) (2003). Agent autonomy. Multiagent systems, artificial societies, and simulated organizations (Vol. 7).
[30]
Horiguchi, Y., & Sawaragi, T. (2005). Effects of probing to adapt machine autonomy in shared control systems. In Proc. international conference on systems. Man and Cybernetics. Hawaii, USA (pp. 317-323).
[31]
Hu, H., & Brady, M. (1996). A parallel processing architecture for sensor based control of intelligent mobile robots. Robotics and Autonomous Systems, 17, 235-257.
[32]
Iturrate, I., Antelis, J., Minguez, J., & Kubler, A. (2009). Non-invasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Transactions on Robotics.
[33]
Ivanoff, S., & Sonn, U. (2005). Changes in the use of assistive devices among 90-year-old person. Aging Clinical and Experimental Research, 17(3), 246-251.
[34]
Jaffe, D. (1990). A case study: the ultrasonic head controlled wheelchair and interface. OnCenter--Technology Transfer News 1(2).
[35]
Jutai, J., & Bortolussi, J. (2003). Psychosocial impact of assistive technology: development of a measure for children (pp. 936-940). Amsterdam: IOS Press.
[36]
Katevas, N. L., Sgouros, N.M., Tzafestas, S. G., Papakonstantinou, G., Beattie, P., Bishop, J. M., Tsanakas, P., & Koutsouris, D. (1997). The autonomous mobile robot scenario: a sensor-aided intelligent navigation system for powered wheelchairs. IEEE Robotics Automation Magazine, 4(4), 60-70.
[37]
Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1), 90-98.
[38]
Khoury, G. J., & Kondraske, G. V. (1991). Measurement and continuous monitoring of human workload associated with manual control devices (Tech. Rep. 91-011R). NASA JSC, Houston, TX.
[39]
Kilkens, O., Post, M., Dallmeijer, A., Seelen, H., & van der Woude, L. (2003). Wheelchair skills tests: a systematic review. Clinical Rehabilitation, 17(4), 418-430.
[40]
Kofman, J., Wu, X., Luu, T. J., & Verma, S. (2005). Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Transactions on Industrial Electronics, 52(5), 1206-1219.
[41]
Kortenkamp, D., Bonasso, R. P., Ryan, D., & Schreckenghost, D. (1997). Traded control with autonomous robots as mixed initiative interaction. In Proc. AAAI spring symposium on mixed initiative interaction, Stanford, USA.
[42]
Mahoney, F., & Barthel, D. (1965). Functional evaluation: the Barthel index. Maryland State Medical Journal, 14, 56-61.
[43]
Mandel, C., Huebner, K., & Vierhuff, T. (2005). Towards an autonomous wheelchair: cognitive aspects in service robotics. In Proceedings of towards autonomous robotic systems (TAROS 05) (pp. 165-172).
[44]
Martin, C. E., Barber, K. S., & Barber, K. S. (1999). Agent autonomy: specification, measurement, and dynamic adjustment. In Proceedings of the autonomy control software workshop, Agents '99 (pp. 8-15).
[45]
Mazo, M. et al. (2001). An integral system for assisted mobility. IEEE Robotics and Automation Magazine, 1, 46-56.
[46]
McLachlan, S., Arblaster, J., Liu, D. K., Valls, J., & Chenoweth, L. (2005). A multi-stage shared control method for an intelligent mobility assistant. In Proc. of the 2005 IEEE 9th international conference on rehabilitation robotics (pp. 426-429). Chicago, USA. Berlin: Springer.
[47]
Millán, J. del R. et al. (2004). FP7 Exploratory Workshops: Workshop 5: Augmented human capabilities for empowering users and communities.
[48]
Miller, D. (1998). Assistive robotics: an overview (pp. 126-136). Berlin: Springer.
[49]
Moravec, H. (1983). Stanford cart and the CMU rover. Proceedings of the IEEE, 71(7), 872-884.
[50]
Morris, A., Donamukkala, R., Kapuria, A., Steinfeld, A., Matthews, J. T., Dunbar-Jacob, J., & Thrun, S. (2003). A robotic walker that provides guidance. In Proc. of the 2003 ieee international conference on robotics and automation (pp. 25-30), Taipei, Taiwan.
[51]
Murphy, R. R. (2004). Human-robot interaction in rescue robotics. IEEE Transactions on Systems, Man and Cybernetics. Part C. Application and Reviews. 34, 138-153.
[52]
Nilsson, N. J. (1984). Shakey the robot (Tech. Rep. 323) SRI International.
[53]
Nisbet, P., Craig, J., Odor, P., & Aitken, S. (1995). 'Smart' wheelchairs for mobility training. Technology Disability, 5, 49-62.
[54]
Norman, D. (1983). Design rules based on analyses of human error. Communications of the ACM, 26, 254-258.
[55]
Parikh, S., Grassi, V., Kumar, V., & Okamoto, J. (2004). Incorporating user inputs in motion planning for a smart wheelchair. In Proc. of the 2004 IEEE international conference on robotics and automation (pp. 2043-2048), New Orleans, USA. Berlin: Springer.
[56]
Parikh, S., Grassi, V., Kumar, V., & Okamoto, J. (2005). Usability study of a control framework for a intelligent wheelchair. In Proc. of the 2005 IEEE international conference robotics and automation (pp. 4745-4750). New Orleans, USA. Berlin: Springer.
[57]
Parker, M., Baker, P. S., & Allman, R. M. (2002). A life-space approach to functional assessment of mobility in the elderly. Journal of Gerontological Social Work, 35(4), 35-55.
[58]
Poncela, A., Pérez, E. J., Bandera, A., Urdiales, C., & Sandoval, F. (2002). Efficient integration of metric and topological maps for directed exploration of unknown environments. Robotics and Autonomous Systems, 41(1), 21-39.
[59]
Poncela, A., Urdiales, C., Fernández-Espejo, B., & Sandoval, F. (2008). Place characterization for navigation via behavior merging for an autonomous mobile robot. In Proc. of the IEEE Mediterranean conference 2008 (Melecon'2008). Ajaccio, France.
[60]
Prassler, E., Scholz, J., & Fiorini, P. (1999). Navigating a robotic wheelchair in a railway station during rush hour. International Journal on Robotics Research, 18(7), 760-772.
[61]
Rao, R. S., Conn, K., Jung, S. H., Katupitiya, J., Kientz, T., Kumar, V., Ostrowski, J., Patel, S., & Taylor, C. J. (2002). Human robot interaction: applications to smart wheelchairs. In Proc. IEEE international conference on robotics and automation. Washington, USA.
[62]
Rebsamen, B., Burdet, E., Cuntai, G., Chee Leong, T., Qiang, Ze., Ang, M., & Laugier, C. (2007). Controlling a wheelchair using a BCI with low information transfer rate. In Proceedings of the IEEE 10th international conference on rehabilitation robotics. Singapore: Noordwijk.
[63]
Scerri, P., Pynadath, D., & Tambe, M. (2001). Adjustable autonomy in real-world multi-agent environments. In Int. conf. AGENTS 01 (pp. 300-307).
[64]
Shire, B. (1987). Microcomputer-based scanning interface for powered wheelchair. In Proc. annu. RESNA conf. (pp. 541-543). San Jose, California, USA.
[65]
Simpson, R., & Levine, S. (1997). Development and evaluation of voice control for a smart wheelchair. In Proc. annu. RESNA conf., (pp. 417-419). Washington, USA.
[66]
Simpson, R., & Levine, S. P. (1998). NavChair: an assistive wheelchair navigation system with automatic adaptation (pp. 235-255). Berlin: Springer.
[67]
Spier, E. (1997). From reactive behaviour to adaptive behaviour-- motivational models for behaviour in animals and robots. Master Thesis.
[68]
Urdiales, C., Bandera, A., Pérez, E. J., Poncela, A., & Sandoval, F. (2003). Hierarchical planning in a mobile robot for map learning and navigation (pp. 2165-2188). Physica-Verlag: Heidelberg.
[69]
Urdiales, C., Trazegnies, C., Bandera, A., & Sandoval, F. (2003). Corner detection based on adaptively filtered curvature function. Electronics Letters, 39(5), 426 -428.
[70]
Vázquez-Martin, R., Pérez, E., Urdiales, C., del Toro, J., & Sandoval, F. (2006). Hybrid navigation guidance for intelligent mobiles. IEEE ITS Society Newsletter, 4(8), 24-30.
[71]
Volosyak, I., Kouzmitcheva, O., Ristic, D., & Gräser, A. (2005). Improvement of visual perceptual capabilities by feedback structures for robotic system friend. IEEE Transactions on Systems, Man and Cybernetics Part C, Applications and Reviews, 35(1), 66-74.
[72]
Webster, J., Cottam, G., Gouvier, W., Blanton, P., Beissel, G., & Wofford, J. (1988). Wheelchair obstacle course performance in right cerebral vascular accident victims. Journal of Clinical and Experimental Neuropsychology, 11, 295-310.
[73]
Weiner, E. (1989). Human factors of advanced technology (glass cockpit) transport aircraft (NASA TR 117528).
[74]
Yanco, H. A. (1998). Wheelesley: a robotic wheelchair system: indoor navigation and user interface, assistive technology and artificial intelligence. In Applications in robotics, user interfaces and natural language processing (pp. 256-268). Berlin: Springer.
[75]
Yanco, H. A., Drury, J. L., & Scholtz, J. (2004). Beyond usability evaluation: analysis of human robot interaction at a major robotics competition. Journal of Human Computer Interaction, 19, 117- 149.
[76]
Yesavage, J., Brink, T., Rose, T., Lum, O., Huang, V., Adey, M., & Leirer, V. (1983). Development and validation of a geriatric depression screening scale: a preliminary report. Journal of Psychiatric Research, 17, 37-49.

Cited By

View all
  • (2024)PairPlayVR: Shared Hand Control for Virtual GamesProceedings of the Augmented Humans International Conference 202410.1145/3652920.3653057(311-314)Online publication date: 4-Apr-2024
  • (2023)Egocentric Computer Vision for Hands-Free Robotic Wheelchair NavigationJournal of Intelligent and Robotic Systems10.1007/s10846-023-01807-4107:1Online publication date: 14-Jan-2023
  • (2022)Understanding Interactions for Smart Wheelchair Navigation in CrowdsProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3502085(1-16)Online publication date: 29-Apr-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Autonomous Robots
Autonomous Robots  Volume 30, Issue 2
February 2011
106 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 February 2011

Author Tags

  1. Autonomous navigation
  2. Reactive behaviours
  3. Shared control
  4. Wheelchair

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)PairPlayVR: Shared Hand Control for Virtual GamesProceedings of the Augmented Humans International Conference 202410.1145/3652920.3653057(311-314)Online publication date: 4-Apr-2024
  • (2023)Egocentric Computer Vision for Hands-Free Robotic Wheelchair NavigationJournal of Intelligent and Robotic Systems10.1007/s10846-023-01807-4107:1Online publication date: 14-Jan-2023
  • (2022)Understanding Interactions for Smart Wheelchair Navigation in CrowdsProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3502085(1-16)Online publication date: 29-Apr-2022
  • (2021)An ‘Ethical Black Box’, Learning From Disagreement in Shared Control Systems2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)10.1109/SMC52423.2021.9658964(398-403)Online publication date: 17-Oct-2021
  • (2017)Local driving assistance from demonstration for mobility aids2017 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA.2017.7989699(5935-5941)Online publication date: 29-May-2017
  • (2017)Intelligent wheelchair control strategies for older adults with cognitive impairmentAutonomous Robots10.1007/s10514-016-9568-y41:3(539-554)Online publication date: 1-Mar-2017
  • (2016)Analyzing drivers' affect for the design of intelligent wheelchairs for older adults with cognitive impairmentProceedings of the 10th EAI International Conference on Pervasive Computing Technologies for Healthcare10.5555/3021319.3021364(268-273)Online publication date: 16-May-2016
  • (2011)The bare necessities: Adaptive assistance for wheelchair controlAI Communications10.5555/2350124.235012524:4(337-339)Online publication date: 1-Dec-2011

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media