Nothing Special   »   [go: up one dir, main page]

skip to main content
article

An efficient compact quadratic convex reformulation for general integer quadratic programs

Published: 01 January 2013 Publication History

Abstract

We address the exact solution of general integer quadratic programs with linear constraints. These programs constitute a particular case of mixed-integer quadratic programs for which we introduce in Billionnet et al. (Math. Program., 2010) a general solution method based on quadratic convex reformulation, that we called MIQCR . This reformulation consists in designing an equivalent quadratic program with a convex objective function. The problem reformulated by MIQCR has a relatively important size that penalizes its solution time. In this paper, we propose a convex reformulation less general than MIQCR because it is limited to the general integer case, but that has a significantly smaller size. We call this approach Compact Quadratic Convex Reformulation (CQCR) . We evaluate CQCR from the computational point of view. We perform our experiments on instances of general integer quadratic programs with one equality constraint. We show that CQCR is much faster than MIQCR and than the general non-linear solver BARON (Sahinidis and Tawarmalani, User's manual, 2010) to solve these instances. Then, we consider the particular class of binary quadratic programs. We compare MIQCR and CQCR on instances of the Constrained Task Assignment Problem. These experiments show that CQCR can solve instances that MIQCR and other existing methods fail to solve.

References

[1]
Audet, C., Hansen, P., Savard, G.: Essays and Surveys in Global Optimization. GERAD 25th Anniversary Series. Springer, New York (2005).
[2]
Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and mixed 0-1 programming problems. J. Optim. Theory Appl. 93 (2), 273-300 (1997).
[3]
Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to the case of general mixed integer program. Math. Program. 13 (1), 381-401 (2012).
[4]
Billionnet, A., Elloumi, S., Lambert, A.: Linear reformulations of integer quadratic programs. In: Le Thi, H.A., Bouvry, P., Tao, P.D. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences, Second International Conference, MCO 2008, September 8-10, Metz, France, pp. 43-51 (2008).
[5]
Billionnet, A., Elloumi, S., Plateau, M.-C.: Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: the QCR method. Discrete Appl. Math. 157 (6), 1185-1197 (2009).
[6]
Borchers, B.: CSDP, A C library for semidefinite programming. Optim. Methods Softw. 11 (1), 613-623 (1999).
[7]
Cui, Y.: Dynamic programming algorithms for the optimal cutting of equal rectangles. Appl. Math. Model. 29 , 1040-1053 (2005).
[8]
EIQP: http://cedric.cnam.fr/~lambe_a1/siqp/Library/index.php
[9]
Elloumi, S.: Contribution à la résolution des programmes non linéaires en variables 0-1, application aux problèmes de placement de tâches dans les systèmes distribués. Thèse de doctorat en informatique, Conservatoire National des Arts et Métiers (1991).
[10]
Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8 , 67-71 (1989).
[11]
Floudas, C.A.: Deterministic Global Optimization. Kluwer Academic, Dordrecht (2000).
[12]
Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0-1 mixed integer programs. Math. Program. 106 , 225-236 (2006).
[13]
Fu, H.L., Shiue, L., Cheng, X., Du, D.Z., Kim, J.M.: Quadratic integer programming with application in the chaotic mappings of complete multipartite graphs. J. Optim. Theory Appl. 110 (3), 545-556 (2001).
[14]
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completness. Freeman, San Francisco (1979).
[15]
globallib: http://www.gamsworld.org/global/globallib/globalstat.htm
[16]
Hahn, P., Kim, B.J., Guignard, M., Smith, J., Zhu, Y.R.: An algorithm for the generalized quadratic assignment problem. Comput. Optim. Appl. 40 (3), 351-372 (2008). Available online
[17]
Hua, Z.S., Banerjee, P.: Aggregate line capacity design for PWB assembly systems. Int. J. Prod. Res. 38 (11), 2417-2441 (2000).
[18]
IBM-ILOG, IBM ILOG CPLEX 12.1 Reference Manual. IBM ILOG CPLEX (2010).
[19]
Liberti, L., Maculan, N.: Nonconvex optimization and its applications. In: Global Optimization: From Theory to Implementation. Springer, New York (2006).
[20]
Laguna, M., Mart, R.: GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J. Comput. 11 , 44-52 (1999).
[21]
Lambert, A.: Résolution de programmes quadratiques en nombres entiers. Thèse de doctorat en informatique, Conservatoire National des Arts et Métiers. (ref. CEDRIC 1838) (2009).
[22]
Mateus, G.R., Resende, M.G.C., Silva, R.M.A.: GRASP with path-relinking for the generalized quadratic assignment problem. J. Heuristics 17 (1), 527-565 (2011).
[23]
minlplib: http://www.gamsworld.org/minlp/minlplib.htm
[24]
Resende, M.G.C., Ribeiro, C.C.: GRASP with path-relinking: recent advances and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers, pp. 29-63. Springer, Berlin (2005).
[25]
Sahinidis, N.V., Tawarmalani, M.: BARON 9.0.4: Global optimization of mixed-integer nonlinear programs. User's manual (2010). Available at http://www.gams.com/dd/docs/solvers/baron.pdf
[26]
Sahinidis, N.V., Tawarmalani, M.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103 (2), 225-249 (2005).
[27]
Sherali, H.D., Adams, W.P.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manag. Sci. 32 (10), 1274-1290 (1986).
[28]
TAPLib: http://cedric.cnam.fr/oc/TAP/TAP.html
[29]
Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer Academic, Dordrecht (2002).

Cited By

View all
  • (2022)SDP-quality bounds via convex quadratic relaxations for global optimization of mixed-integer quadratic programsMathematical Programming: Series A and B10.1007/s10107-021-01680-9196:1-2(203-233)Online publication date: 1-Nov-2022
  • (2015)Solving the task assignment problem with ant colony optimisation incorporating ideas from the clonal selection algorithmInternational Journal of Bio-Inspired Computation10.1504/IJBIC.2015.0692897:2(129-143)Online publication date: 1-May-2015

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computational Optimization and Applications
Computational Optimization and Applications  Volume 54, Issue 1
January 2013
204 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 January 2013

Author Tags

  1. Computational experiments
  2. Exact convex reformulation
  3. Integer programming
  4. Quadratic programming

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)SDP-quality bounds via convex quadratic relaxations for global optimization of mixed-integer quadratic programsMathematical Programming: Series A and B10.1007/s10107-021-01680-9196:1-2(203-233)Online publication date: 1-Nov-2022
  • (2015)Solving the task assignment problem with ant colony optimisation incorporating ideas from the clonal selection algorithmInternational Journal of Bio-Inspired Computation10.1504/IJBIC.2015.0692897:2(129-143)Online publication date: 1-May-2015

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media