Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Derivative-free methods for bound constrained mixed-integer optimization

Published: 01 October 2012 Publication History

Abstract

We consider the problem of minimizing a continuously differentiable function of several variables subject to simple bound constraints where some of the variables are restricted to take integer values. We assume that the first order derivatives of the objective function can be neither calculated nor approximated explicitly. This class of mixed integer nonlinear optimization problems arises frequently in many industrial and scientific applications and this motivates the increasing interest in the study of derivative-free methods for their solution. The continuous variables are handled by a linesearch strategy whereas to tackle the discrete ones we employ a local search-type approach. We propose different algorithms which are characterized by the way the current iterate is updated and by the stationarity conditions satisfied by the limit points of the sequences they produce.

References

[1]
Abramson, M.A., Audet, C., Chrissis, J.W., Walston, J.G.: Mesh adaptive direct search algorithms for mixed variable optimization. Optim. Lett. 3(1), 35-47 (2009).
[2]
Abramson, M.A., Audet, C., Couture, G., Dennis, J.E. Jr., Le Digabel, S.: The NOMAD project. Software available at http://www.gerad.ca/nomad
[3]
Abramson, M.A., Audet, C., Dennis, J.E. Jr.: Filter pattern search algorithms for mixed variable constrained optimization problems. Pac. J. Optim. 3(3), 477-500 (2007).
[4]
Audet, C., Dennis, J.E. Jr.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188-217 (2006).
[5]
Audet, C., Dennis, J.E. Jr.: A pattern search filter method for nonlinear programming without derivatives. SIAM J. Optim. 14(4), 980-1010 (2004).
[6]
Audet, C., Dennis, J.E. Jr.: Pattern search algorithms for mixed variable programming. SIAM J. Optim. 11(3), 573-594 (2001).
[7]
Dixon, L.C.W., Szegö, G.P.: Towards Global Optimization, vol. 2. North Holland, Amsterdam (1975).
[8]
Elster, C., Neumaier, A.: A grid algorithm for bound-constrained optimization of noisy functions. IMA J. Numer. Anal. 15, 585-608 (1995).
[9]
Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems for Local and Global Optimization. Kluwer Academic, Dordrecht (1999).
[10]
Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer, Berlin (1981).
[11]
Le Digabel, S.: Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4) (2010).
[12]
Lin, C.-J., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A decomposition algorithm model for singly linearly constrained problems subject to lower and upper bounds. J. Optim. Theory Appl. 141, 107-126 (2009).
[13]
Liuzzi, G., Lucidi, S., Sciandrone, M.: Sequential penalty derivative-free methods for nonlinear constrained optimization. TR 01/2009 Dip. di Sistemi e Informatica, Università degli Studi di Firenze (2009).
[14]
Lucidi, S., Piccialli, V., Sciandrone, M.: An algorithm model for mixed variable programming. SIAM J. Optim. 14, 1057-1084 (2005).
[15]
Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization. Comput. Optim. Appl. 21(2), 119-142 (2002).
[16]
Lucidi, S., Sciandrone, M., Tseng, P.: Objective-derivative-free methods for constrained optimization. Math. Program. 92(1), 37-59 (2002).
[17]
Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM J. Optim. 9(4), 1082-1099 (1999).
[18]
Schittkowski, K.: More Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 282. Springer, Berlin (1987).
[19]
Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1-25 (1997).
[20]
Törn, A., Zilinskas, A.: Global Optimization. Springer, Berlin (1989).

Cited By

View all
  • (2022)Review and comparison of algorithms and software for mixed-integer derivative-free optimizationJournal of Global Optimization10.1007/s10898-021-01085-082:3(433-462)Online publication date: 1-Mar-2022
  • (2022)Derivative-free methods for mixed-integer nonsmooth constrained optimizationComputational Optimization and Applications10.1007/s10589-022-00363-182:2(293-327)Online publication date: 1-Jun-2022
  • (2021)A method for convex black-box integer global optimizationJournal of Global Optimization10.1007/s10898-020-00978-w80:2(439-477)Online publication date: 1-Jun-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computational Optimization and Applications
Computational Optimization and Applications  Volume 53, Issue 2
October 2012
343 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 October 2012

Author Tags

  1. Bound constrained optimization
  2. Derivative-free optimization
  3. Mixed-integer nonlinear programming

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Review and comparison of algorithms and software for mixed-integer derivative-free optimizationJournal of Global Optimization10.1007/s10898-021-01085-082:3(433-462)Online publication date: 1-Mar-2022
  • (2022)Derivative-free methods for mixed-integer nonsmooth constrained optimizationComputational Optimization and Applications10.1007/s10589-022-00363-182:2(293-327)Online publication date: 1-Jun-2022
  • (2021)A method for convex black-box integer global optimizationJournal of Global Optimization10.1007/s10898-020-00978-w80:2(439-477)Online publication date: 1-Jun-2021
  • (2017)BFO, A Trainable Derivative-free Brute Force Optimizer for Nonlinear Bound-constrained Optimization and Equilibrium Computations with Continuous and Discrete VariablesACM Transactions on Mathematical Software10.1145/308559244:1(1-25)Online publication date: 28-Jun-2017
  • (2016)A SVM Surrogate Model-Based Method for Parametric Yield OptimizationIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2015.250130735:7(1224-1228)Online publication date: 1-Jul-2016
  • (2015)Derivative-Free Methods for Mixed-Integer Constrained Optimization ProblemsJournal of Optimization Theory and Applications10.1007/s10957-014-0617-4164:3(933-965)Online publication date: 1-Mar-2015
  • (2015)Derivative-Free Robust Optimization for Circuit DesignJournal of Optimization Theory and Applications10.1007/s10957-013-0441-2164:3(842-861)Online publication date: 1-Mar-2015
  • (2015)A class of derivative-free nonmonotone optimization algorithms employing coordinate rotations and gradient approximationsComputational Optimization and Applications10.1007/s10589-014-9665-960:1(1-33)Online publication date: 1-Jan-2015
  • (2015)A trust-region-based derivative free algorithm for mixed integer programmingComputational Optimization and Applications10.1007/s10589-014-9660-160:1(199-229)Online publication date: 1-Jan-2015
  • (2013)SO-MIComputers and Operations Research10.1016/j.cor.2012.08.02240:5(1383-1400)Online publication date: 1-May-2013

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media