Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Social tagging in recommender systems: a survey of the state-of-the-art and possible extensions

Published: 01 March 2010 Publication History

Abstract

Social tagging systems have grown in popularity over the Web in the last years on account of their simplicity to categorize and retrieve content using open-ended tags. The increasing number of users providing information about themselves through social tagging activities caused the emergence of tag-based profiling approaches, which assume that users expose their preferences for certain contents through tag assignments. Thus, the tagging information can be used to make recommendations. This paper presents an overview of the field of social tagging systems which can be used for extending the capabilities of recommender systems. Various limitations of the current generation of social tagging systems and possible extensions that can provide better recommendation capabilities are also considered.

References

[1]
Abel F, Frank M, Henze N, Krause D, Plapp.ert D, Siehndel P (2007) GroupMe!-where semantic web meets web 2.0. In: International semantic web conference.
[2]
Abel F, Henze N, Krause D (2008a) Exploiting additional context for graph-based tag recommendations in Folksonomy systems. 2008 IEEE/WIC/ACMinternational conference on web intelligence and intelligent agent technology, wi-iat, vol 1, pp. 148-154.
[3]
Abel F, Henze N, Krause D (2008b) Social semantic web at work: annotating and grouping social media content. Web information systems and technologies 4th international conference, WEBIST 2008. Funchal, Madeira, Portugal.
[4]
Arenas-García J, Meng A, Petersen KB, Schiøler T L, Hansen LK, Larsen J (2007) Unveiling music structure via PLSA similarity fusion. In: IEEE international workshop on machine learning for signal processing. IEEE Press, pp. 419-424.
[5]
Au Yeung CM, Gibbins N, Shadbolt N (2007) Understanding the semantics of ambiguous tags in folksonomies. In: Brody LC et al (ed) Proceedings of the first international workshop on emergent Semantics and ontology evolution, ESOE 2007, co-located with ISWC 2007 + ASWC 2007, vol 292. CEURWorkshop Proceedings, Busan, pp. 108-121.
[6]
Bar-Ilan J, Shoham S, Idan A, Miller Y, Shachak A (2006) Structured vs. unstructured tagging-a case study. In: Proceedings of the 15th international WWW conference. Collaborative Web Tagging Workshop.
[7]
Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Networks ISDN Syst 30(1-7):107-117.
[8]
Cattuto C, Loreto V, Pietronero L (2007) Semiotic dynamics and collaborative tagging. Proc Natl Acad Sci USA 104(5):1461-1464.
[9]
Celma O, Ramirez M, Herrera P (2005) Foafing themusic: amusic recommendation system based on rss feeds and user preferences. In: Proceedings of the 6th international conference on music information retrieval (ISMIR).
[10]
Ciro C, Schmitz C, Baldassarri A, Servedio V, Loreto V, HothoA (2007) Network properties of folksonomies. AI Commun 20(4):245-262.
[11]
Cohn D, Hofmann T (2000) The missing link-a probabilistic model of document content and hypertext connectivity. In Leen TK, Dietterich TG, Tresp V (eds) NIPS. MIT Press, pp. 430-436.
[12]
Diederich J, Iofciu T (2006) Finding communities of practice from user profiles based on folksonomies. In: Proceedings of the 1st international workshop on building technology enhanced learning solutions for communities of practice (TEL-CoPs'06). Crete, Greece.
[13]
Dorigo M, Caro GD (1999) New ideas in optimization. In: The ant colony optimization meta-heuristic. McGraw-Hill, pp. 11-32.
[14]
Firan C, Nejdl W, Paiu R (2007) The benefit of using tagbased profiles. In: Proceedings of the 2007 Latin American web conference (LA-WEB 2007). Santiago de Chile, Chile, pp. 32-41.
[15]
Gemmell J, Shepitsen A, Mobasher B, Burke R (2008a) Personalization in Folksonomies based on tag clustering. Intelligent techniques for web personalization & recommender systems.
[16]
Gemmell J, Shepitsen A, Mobasher B, Burke R (2008b) Personalizing navigation in folksonomies using hierarchical tag clustering. In: Proceedings of the 10th international conference on data warehousing and knowledge discovery.
[17]
Godoy D, Amandi A (2006) Modeling user interests by conceptual clustering. Inf Syst 31(4-5):247-265.
[18]
Godoy D, Amandi A (2008) Hybrid content and tag-based profiles for recommendation in collaborative tagging systems. In: Proceedings of the 6th Latin American web congress (LA-WEB 2008). IEEE Computer Society Vila Velha, Brazil, pp. 58-65.
[19]
Golder A, Huberman A (2005) The structure of collaborative tagging systems. HPL Technical Report.
[20]
Gordon-Murnane L (2006) Social bookmarking, folksonomies, and Web 2.0 tools. Searcher 14(6):26-38.
[21]
Gui-Rong X, Wenyuan D, Qiang Y, Yong Y (2008) Topic-bridged plsa for cross-domain text classification, In: SIGIR '08: proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval. New York, pp. 627-634.
[22]
Guy M, Tonkin E (2006) Folksonomies: tidying up tags? D-Lib Magazine, 12(1).
[23]
Harry H, Robu V, Shepard H (2006) The dynamics and semantics of collaborative tagging. In: Proceedings of the 1st semantic authoring and annotation workshop-SAAW06.
[24]
Hofmann T (1999) Probabilistic latent semantic analysis. In: Proceedings of uncertainty in artificial intelligence-UAI '99.
[25]
Hotho A, Jäschkes R, Schmitz C, Stumme G (2006a) Information retrieval in folksonomies: search and ranking. In: Sure Y, Domingue J (eds) The Semantic web: research and app.lications, vol 4011 of LNAI. Springer, Heidelberg, pp. 411-426.
[26]
Hotho A, Jäschke R, Schmitz C, Stumme G (2006b) BibSonomy: a social bookmark and publication sharing system. In: Proceedings of first conceptual structures tool interoperability workshop. Aalborg, pp. 87-102.
[27]
Hotho A, Jäschke R, Schmitz C, Stumme G (2006c) FolkRank: a ranking algorithm for folksonomies. In: Proceedings of workshop on information retrieval (FGIR). Germany.
[28]
Jäschke R, Marinho L, Hotho A, Schmidt-Thieme L, Stumme G (2007) Tag recommendations in folksonomies. In: Hinneburg A (ed)Workshop proceedings of Lernen-Wissensentdeckung-Adaptivität (LWA 2007). pp. 13-20.
[29]
Jin X, Zhou Y, Mobasher B (2004)Web usage mining based on probabilistic latent semantic analysis. In: Kim W, Kohavi R, Gehrke J, DuMouchel W (eds) KDD. ACM, pp. 197-205.
[30]
Konstan JA, Herlocker JL, Terveen Loren G, Riedl JT (2004) Evaluating collaborative filtering recommender systems. ACM Trans Inf Syst 22(1):5-53.
[31]
Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5):604-632.
[32]
Liang H, Xu Y, Li Y, Nayak R (2008) Collaborative filtering recommender systems using tag information. In: IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology. pp. 59-62.
[33]
Lin X, Beaudoin JE, Bui Y, Desai K (2006) Exploring characteristics of social classification. In: 17th ASIS&T SIG/CR classification research workshop.
[34]
MacLaurin MB (2007) Selection-based item tagging. Patent App.lication no. US 2007/0028171 A1. Filed: Jul. 29, 2005. Publ.: Feb. 1.
[35]
Marlow C, Naaman M, Boyd D, Davis M (2006) Ht06, tagging paper, taxonomy, flickr, academic article, to read. In: HYPERTEXT '06: proceedings of the seventeenth conference on Hypertext and hypermedia. ACM Press, New York, pp. 31-40.
[36]
Mathes A (2004) Folksonomies-cooperative classification and communication through shared metadata. Comput Mediat Commun.
[37]
Michalski RS, Stepp. RE (1983) Learning from observation: conceptual clustering. In: Michalski RS, Carbonell JG, Mitchell TMMachine learning: an artificial intelligence app.roach. TIOGA Publishing Co., Palo Alto pp. 331-363.
[38]
Michlmayr E, Cayzer S (2007) Learning user profiles from tagging data and leveraging them for personal(ized) information access. In: Proceedings of theworkshop on tagging andmetadata for social information organization. Banff.
[39]
Michlmayr E, Cayzer S, Shabajee P (2007) Add-A-Tag: learning adaptive user profiles from bookmark collections. In: Proceedings of the 1st international conference on weblogs and social media (ICWSM'06). Boulder.
[40]
Mika P (2005) Ontologies are us: a unified model of social networks and semantics. In: Proceedings of the 4th international semantic web conference, ISWC 2005. Springer, Galway, pp. 522-536.
[41]
Noll MG, Meinel C (2007) Web search personalization via social bookmarking and tagging. In: Proceedings of 6th international semantic web conference (ISWC) and 2nd Asian semantic web conference (ASWC), vol 4825 of LNCS. Busan, pp. 367-380.
[42]
Page L, Brin S, Motwani R, Winograd T (1998) The PageRank citation ranking: bringing order to the web. Technical report, Stanford Digital Library Technologies Project.
[43]
Pauws S, Verhaegh W, Vossen M (2006) Fast generation of optimal music playlists using local search. In: Proceedings of the 6th international conference on music information retrieval (ISMIR).
[44]
Peters I, Stock WG (2007) Folksonomy and information retrieval. In: Proceedings of the 70th annual meeting of the American society for information science and technology, vol 45 CD-ROM.
[45]
Pluzhenskaia M (2006) Folksonomies or fauxsonomies: how social is social bookmarking? 17th ASIS&T SIG/CR classification research workshop. Abstracts of Posters, pp. 23-24.
[46]
Popescul A, Ungar LH, Pennock DM, Lawrence S (2001) Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments. In: Proceedings of 17th conference on uncertainty in artificial intelligence. pp. 437-444.
[47]
Quintarelli E (2005) Folksonomies: power to the people. ISKO Italy-UniMIB meeting: Milan. June 24, Retrieved from:http://www.dimat.unipv.it/biblio/isko/doc/folksonomies.htm.
[48]
Resnick P, Varian H (1997) Recommender systems. Communications of the ACM 40.
[49]
Resnick P, Iacovou N, SuchakM, Bergstrom Riedl J (1994) GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of CSCW. ACM Press, pp. 75-186.
[50]
Rendle S, Marinho B, Nanopoulos A, Thieme L (2009) Learning optimal ranking with tensor factorization for tag recommendation. In: KDD '09: proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 727-736.
[51]
Shepitsen A, Gemmell J, Mobasher B, Burke R (2008) Personalized recommendation in social tagging systems using hierarchical clustering. In: Proceedings of the 2008 ACM conference on recommender systems. pp. 259-266.
[52]
StockWG (2007) Information retrieval. Searching and finding information. In: Proceedings of the 70th annual meeting of the American society for information science and technology.
[53]
Stoyanovich J, Yahia SA, Marlow C, Yu C (2008) Leveraging tagging to model user interests in Delicious. In: AAAI spring symposium on social information processing (AAAI-SIP). California, pp. 104-109.
[54]
Symeonidis P, Nanopoulos A, Manolopoulos Y (2008) Tag recommendations based on tensor dimensionality reduction. In: RecSys '08: proceedings of the 2008 ACM conference on recommender systems. New York, pp. 43-50.
[55]
Szomszor M, Cattuto C, Alani H, O'Hara K, Baldassarri A, Loreto V, Servedio VDP (2007) Folksonomies, the SemanticWeb, and movie recommendation. In: Proceedings of the 4th European semantic web conference, bridging the gap between Semantic web and web 2.0. Innsbruck, pp. 71-84.
[56]
Thompson K, Langley P (1991) Concept formation in structured domains. In: Fisher D, PazzaniM, Langley P (eds) Concept formation: knowledge and experience in unsupervised learning. Morgan Kaufmann, San Francisco pp. 127-161.
[57]
Tso-Sutter KHL, Marinho LB, Schmidt-Thieme L (2008) Tag-aware recommender systems by fusion of collaborative filtering algorithms. In: Proceedings of the 2008 ACM symposium on app.lied computing. ACM, USA, pp. 1995-1999.
[58]
Uitdenbogerd A, van Schnydel R (2002) A review of factors affecting music recommender success. In: Proceedings of 3rd international conference on music information retrieval. Paris.
[59]
Veres C (2006a) The language of folksonomies: what tags reveal about user classification. Lecture Notes in Computer Science, vol 3999, pp. 58-69.
[60]
Veres C (2006b) Concept modeling by the masses: folksonomy structure and interoperability. Lecture Notes in Computer Science, vol 4215, pp. 325-338.
[61]
Wal V (2005) Folksonomy definition and wikipedia.
[62]
Wetzker R, Umbrath W, Said A (2009) A hybrid app.roach to item recommendation in folksonomies ESAIR '09: proceedings of theWSDM'09workshop on exploiting semantic annotations in information retrieval. ACM, New York, pp. 25-29.
[63]
WingetM(2006) User-defined classification on the online photo sharing site Flickr...or, how I learned to stop worrying and love the million typing monkeys. 17th ASIS&T SIG/CR classification research workshop.
[64]
Wu X, Zhang L, Yu Y (2006) Exploring social annotations for the semantic web. In:WWW'06: proceedings of the 15th international conference on World Wide Web. ACM Press, New York, pp. 417-426.
[65]
Xi W, Zhang B, Lu Y, Chen Z, Yan S, Zeng H, Ma W, Fox E (2004) Link fusion: a unified link analysis framework for multi-type interrelated data objects. In: Proceedings of 13th international world wide web conference, New York.
[66]
Xu Z, Fu Y, Mao J, Su D (2006) Towards the semantic web: collaborative tag suggestions. In: Proceedings of the 15th international WWW conference. Collaborative Web Tagging Workshop.
[67]
Yeung CMA, Gibbins N, Shadbolt N (2008) A study of user profile generation from folksonomies. In: Social web and knowledge management, social web 2008 workshop at WWW2008. Beijing, China.
[68]
Yoshii K, Goto M, Komatani K, Ogata T, Okuno HG (2006) Hybrid collaborative and content-based music recommendation using probabilistic model with latent user preferences. In: Proceedings of the 7th international conference on music information retrieval (ISMIR).

Cited By

View all
  1. Social tagging in recommender systems: a survey of the state-of-the-art and possible extensions

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Artificial Intelligence Review
    Artificial Intelligence Review  Volume 33, Issue 3
    March 2010
    98 pages

    Publisher

    Kluwer Academic Publishers

    United States

    Publication History

    Published: 01 March 2010

    Author Tags

    1. Folksonomy
    2. Personalization
    3. Recommender systems
    4. Social tagging

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 19 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Using Factor Decomposition Machine Learning Method to Music RecommendationComplexity10.1155/2021/99137272021Online publication date: 1-Jan-2021
    • (2021)Hybrid Recommendation of Movies Based on Deep Content FeaturesService-Oriented Computing – ICSOC 2021 Workshops10.1007/978-3-031-14135-5_3(32-45)Online publication date: 22-Nov-2021
    • (2020)A study on features of social recommender systemsArtificial Intelligence Review10.1007/s10462-019-09684-w53:2(965-988)Online publication date: 1-Feb-2020
    • (2020)A social network for supporting end users in the composition of services: definition and proof of conceptComputing10.1007/s00607-020-00796-8102:8(1909-1940)Online publication date: 1-Aug-2020
    • (2020)AudioLens: Audio-Aware Video Recommendation for Mitigating New Item ProblemService-Oriented Computing – ICSOC 2020 Workshops10.1007/978-3-030-76352-7_35(365-378)Online publication date: 14-Dec-2020
    • (2018)A review on the dynamics of social recommender systemsInternational Journal of Web Engineering and Technology10.5555/3292941.329294413:3(255-276)Online publication date: 1-Jan-2018
    • (2018)A hybrid recommender system integrated into LAMS for learning designersEducation and Information Technologies10.1007/s10639-017-9668-023:3(1297-1329)Online publication date: 1-May-2018
    • (2018)Enhancing e-learning systems with personalized recommendation based on collaborative tagging techniquesApplied Intelligence10.1007/s10489-017-1051-848:6(1519-1535)Online publication date: 1-Jun-2018
    • (2017)Producing relevant interests from social networks by mining users' tagging behaviourData & Knowledge Engineering10.1016/j.datak.2016.12.003108:C(15-29)Online publication date: 1-Mar-2017
    • (2017)An empirical study on user-topic rating based collaborative filtering methodsWorld Wide Web10.1007/s11280-016-0412-220:4(815-829)Online publication date: 1-Jul-2017
    • Show More Cited By

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media