Nothing Special   »   [go: up one dir, main page]

skip to main content
article

The next evolution of MDE: a seamless integration of machine learning into domain modeling

Published: 01 April 2019 Publication History

Abstract

Machine learning algorithms are designed to resolve unknown behaviors by extracting commonalities over massive datasets. Unfortunately, learning such global behaviors can be inaccurate and slow for systems composed of heterogeneous elements, which behave very differently, for instance as it is the case for cyber-physical systems and Internet of Things applications. Instead, to make smart decisions, such systems have to continuously refine the behavior on a per-element basis and compose these small learning units together. However, combining and composing learned behaviors from different elements is challenging and requires domain knowledge. Therefore, there is a need to structure and combine the learned behaviors and domain knowledge together in a flexible way. In this paper we propose to weave machine learning into domain modeling. More specifically, we suggest to decompose machine learning into reusable, chainable, and independently computable small learning units, which we refer to as microlearning units. These microlearning units are modeled together with and at the same level as the domain data. We show, based on a smart grid case study, that our approach can be significantly more accurate than learning a global behavior, while the performance is fast enough to be used for live learning.

References

[1]
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint (2016). arXiv:1603.04467
[2]
Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 6(2), 161---180 (2010).
[3]
Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601---1604 (2010)
[4]
Bishop, C.M.: Model-based machine learning. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 371(1984) (2012). http://rsta.royalsocietypublishing.org/content/371/1984/20120222
[5]
Budinsky, F., Steinberg, D., Ellersick, R.: Eclipse Modeling Framework: A Developer's Guide (2003)
[6]
Carstoiu, D., Cernian, A., Olteanu, A.: Hadoop hbase-0.20. 2 performance evaluation. In: 2010 4th International Conference on New Trends in Information Science and Service Science (NISS), pp. 84---87. IEEE (2010)
[7]
Chen, P.P.S.: The entity-relationship model--toward a unified view of data. ACM Trans. Database Syst. 1(1), 9---36 (1976).
[8]
Choetkiertikul, M., Dam, H.K., Tran, T., Ghose, A.: Predicting delays in software projects using networked classification. In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 353---364. IEEE (2015)
[9]
Daly, C.: Emfatic language reference (2004)
[10]
Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '00, pp. 71---80. ACM, New York, NY, USA (2000).
[11]
Durgesh, K.S., Lekha, B.: Data classification using support vector machine. J. Theor. Appl. Inf. Technol. 12(1), 1---7 (2010)
[12]
Esbensen, K.H., Geladi, P.: Principles of proper validation: use and abuse of re-sampling for validation. J. Chemom. 24(3---4), 168---187 (2010).
[13]
Fink, C.R., Chou, D.S., Kopecky, J.J., Llorens, A.J.: Coarse- and fine-grained sentiment analysis of social media text. Johns Hopkins APL Tech. Dig. 30(1), 22---30 (2011)
[14]
Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N., Jézéquel, J.: Kevoree modeling framework (KMF): efficient modeling techniques for runtime use. CoRR (2014). arxiv:1405.6817
[15]
Gerbessiotis, A., Valiant, L.: Direct bulk-synchronous parallel algorithms. J. Parallel Distrib. Comput. 22(2), 251---267 (1994). http://www.sciencedirect.com/science/article/pii/S0743731584710859
[16]
Group, O.M.: Tech. rep
[17]
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10---18 (2009).
[18]
Han, W., Miao, Y., Li, K., Wu, M., Yang, F., Zhou, L., Prabhakaran, V., Chen, W., Chen, E.: Chronos: A graph engine for temporal graph analysis. In: Proceedings of the Ninth European Conference on Computer Systems, EuroSys '14, pp. 1:1---1:14. ACM, New York, NY, USA (2014).
[19]
Hartmann, T., Fouquet, F., Klein, J., Traon, Y.L., Pelov, A., Toutain, L., Ropitault, T.: Generating realistic smart grid communication topologies based on real-data. In: 2014 IEEE International Conference on Smart Grid Communications, SmartGridComm 2014, Venice, Italy, November 3---6, 2014, pp. 428---433 (2014).
[20]
Hartmann, T., Fouquet, F., Nain, G., Morin, B., Klein, J., Barais, O., Traon, Y.L.: A native versioning concept to support historized models at runtime. In: Model-Driven Engineering Languages and Systems--17th International Conference, MODELS 2014, Valencia, Spain, September 28---October 3, 2014. Proceedings, pp. 252---268 (2014).
[21]
Hartmann, T., Fouquet, F., Nain, G., Morin, B., Klein, J., Traon, Y.L.: Reasoning at runtime using time-distorted contexts: A [email protected] based approach. In: The 26th International Conference on Software Engineering and Knowledge Engineering, Hyatt Regency, Vancouver, BC, Canada, July 1---3, 2013., pp. 586---591 (2014)
[22]
Hartmann, T., Moawad, A., Fouquet, F., Nain, G., Klein, J., Traon, Y.L.: Stream my models: reactive peer-to-peer distributed [email protected]. In: 18th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MoDELS 2015, Ottawa, ON, Canada, September 30---October 2, 2015, pp. 80---89 (2015).
[23]
Hartmann, T., Moawad, A., Fouquet, F., Reckinger, Y., Mouelhi, T., Klein, J., Le Traon, Y.: Suspicious electric consumption detection based on multi-profiling using live machine learning. In: 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm) (2015)
[24]
Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive computing systems. In: Proceedings of the First International Conference on Pervasive Computing, Pervasive '02, pp. 167---180. Springer, London (2002). http://dl.acm.org/citation.cfm?id=646867.706693
[25]
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5---53 (2004).
[26]
Hido, S., Tokui, S., Oda, S.: Jubatus: An open source platform for distributed online machine learning. In: NIPS 2013 Workshop on Big Learning, Lake Tahoe (2013)
[27]
Hug, T., Lindner, M., Bruck, P.A.: Microlearning: emerging concepts, practices and technologies after e-learning. In: Proceedings of Microlearning, vol. 5 (2005)
[28]
Kent, S.: Model driven engineering. In: Proceedings of the Third International Conference on Integrated Formal Methods, IFM '02, pp. 286---298. Springer, London (2002). http://dl.acm.org/citation.cfm?id=647983.743552
[29]
Kohtes, R.: From Valence to Emotions: How Coarse Versus Fine-Grained Online Sentiment Can Predict Real-World Outcomes. Anchor Academic Publishing, Hamburg (2014)
[30]
Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax Specification. W3c recommendation, W3C (1999)
[31]
Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed graphlab: a framework for machine learning and data mining in the cloud. Proc. VLDB Endow. 5(8), 716---727 (2012)
[32]
Low, Y., Gonzalez, J.E., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Graphlab: a new framework for parallel machine learning. CoRR (2014). arxiv:1408.2041
[33]
Meta object facility (MOF) 2.5 core specification (2015). Version 2.5
[34]
Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497---1516 (2012)
[35]
Moawad, A.: Towards ambient intelligent applications using [email protected] and machine learning for context-awareness. Ph.D. thesis, University of Luxembourg (2016)
[36]
Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: [email protected] to support dynamic adaptation. Computer 42(10), 44---51 (2009).
[37]
Norvig, P.: Artificial Intelligence. NewScientist (27) (2012)
[38]
Object Management Group: OMG Unified Modeling Language, Version 2.5. http://www.omg.org/spec/UML/2.5/PDF (2015)
[39]
Ohmann, T., Herzberg, M., Fiss, S., Halbert, A., Palyart, M., Beschastnikh, I., Brun, Y.: Behavioral resource-aware model inference. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, pp. 19---30. ACM (2014)
[40]
Ottensooser, A., Fekete, A., Reijers, H.A., Mendling, J., Menictas, C.: Making sense of business process descriptions: an experimental comparison of graphical and textual notations. J. Syst. Softw. 85(3), 596---606 (2012)
[41]
Rothenberg, J.: Artificial intelligence, simulation and modeling. In: The Nature of Modeling, pp. 75---92. Wiley, New York (1989). http://dl.acm.org/citation.cfm?id=73119.73122
[42]
Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '07, pp. 687---696. ACM, New York, NY, USA (2007).
[43]
Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns. In: Requirements Engineering Conference (RE), 2013 21st IEEE International, pp. 92---104. IEEE (2013)
[44]
Vierhauser, M., Rabiser, R., Grunbacher, P., Egyed, A.: Developing a DSL-based approach for event-based monitoring of systems of systems: experiences and lessons learned. In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 715---725. IEEE (2015)
[45]
W3C, W.W.W.C.: Owl 2 web ontology language. structural specification and functional-style syntax (2009)
[46]
Wernick, M.N., Yang, Y., Brankov, J.G., Yourganov, G., Strother, S.C.: Machine learning in medical imaging. IEEE Signal Process. Mag. 27(4), 25---38 (2010).
[47]
Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-finder: a recommender system for finding passengers and vacant taxis. IEEE Trans. Knowl. Data Eng. 25(10), 2390---2403 (2013)
[48]
Zhang, B., Zhang, L.: Multi-granular representation-the key to machine intelligence. In: 3rd International Conference on Intelligent System and Knowledge Engineering, 2008. ISKE 2008, vol. 1, pp. 7---7 (2008).
[49]
Zhang, B., Zhang, L.: Multi-granular representation-the key to machine intelligence. In: 3rd International Conference on Intelligent System and Knowledge Engineering, 2008. ISKE 2008, vol. 1, pp. 7---7. IEEE (2008)
[50]
Zhu, H., Shan, L., Bayley, I., Amphlett, R.: Formal descriptive semantics of uml and its applications. In: UML 2 Semantics and Applications p. 95 (2009)

Cited By

View all
  • (2023)Applying Machine Learning and Model-Driven Approach for the Identification and Diagnosis Of Covid-19International Journal of Distributed Systems and Technologies10.4018/IJDST.32164814:1(1-27)Online publication date: 9-May-2023
  • (2023)Reasoning over time into models with DataTimeSoftware and Systems Modeling (SoSyM)10.1007/s10270-023-01080-x22:5(1689-1712)Online publication date: 10-Jan-2023
  • (2022)MDE for machine learning-enabled software systemsProceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings10.1145/3550356.3561576(380-387)Online publication date: 23-Oct-2022
  • Show More Cited By

Index Terms

  1. The next evolution of MDE: a seamless integration of machine learning into domain modeling
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Software and Systems Modeling (SoSyM)
      Software and Systems Modeling (SoSyM)  Volume 18, Issue 2
      Apr 2019
      766 pages

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 April 2019

      Author Tags

      1. Cyber-physical systems
      2. Domain modeling
      3. Live learning
      4. Metamodeling
      5. Model-driven engineering
      6. Smart grids

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 30 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Applying Machine Learning and Model-Driven Approach for the Identification and Diagnosis Of Covid-19International Journal of Distributed Systems and Technologies10.4018/IJDST.32164814:1(1-27)Online publication date: 9-May-2023
      • (2023)Reasoning over time into models with DataTimeSoftware and Systems Modeling (SoSyM)10.1007/s10270-023-01080-x22:5(1689-1712)Online publication date: 10-Jan-2023
      • (2022)MDE for machine learning-enabled software systemsProceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings10.1145/3550356.3561576(380-387)Online publication date: 23-Oct-2022
      • (2022)CalcGraph: taming the high costs of deep learning using modelsSoftware and Systems Modeling (SoSyM)10.1007/s10270-022-01052-722:4(1151-1174)Online publication date: 25-Oct-2022
      • (2022)AI-driven streamlined modeling: experiences and lessons learned from multiple domainsSoftware and Systems Modeling (SoSyM)10.1007/s10270-022-00982-621:3(1-23)Online publication date: 1-Jun-2022
      • (2022)A model-driven approach to machine learning and software modeling for the IoTSoftware and Systems Modeling (SoSyM)10.1007/s10270-021-00967-x21:3(987-1014)Online publication date: 1-Jun-2022
      • (2022)Applying a Healthcare Web of Things Framework for Infertility TreatmentsWeb Engineering10.1007/978-3-031-09917-5_30(426-431)Online publication date: 5-Jul-2022
      • (2021)Artifact and reference models for generative machine learning frameworks and build systemsProceedings of the 20th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences10.1145/3486609.3487199(55-68)Online publication date: 17-Oct-2021
      • (2021)Evaluation of a machine learning classifier for metamodelsSoftware and Systems Modeling (SoSyM)10.1007/s10270-021-00913-x20:6(1797-1821)Online publication date: 1-Dec-2021
      • (2019)Modeling adaptive learning agents for domain knowledge transferProceedings of the 22nd International Conference on Model Driven Engineering Languages and Systems10.1109/MODELS-C.2019.00101(660-665)Online publication date: 15-Sep-2019
      • Show More Cited By

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media