Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Phase recovery, MaxCut and complex semidefinite programming

Published: 01 February 2015 Publication History

Abstract

Phase retrieval seeks to recover a signal $$x \in {\mathbb {C}}^p$$ x C p from the amplitude $$|A x|$$ | A x | of linear measurements $$Ax \in {\mathbb {C}}^n$$ A x C n . We cast the phase retrieval problem as a non-convex quadratic program over a complex phase vector and formulate a tractable relaxation (called PhaseCut) similar to the classical MaxCut semidefinite program. We solve this problem using a provably convergent block coordinate descent algorithm whose structure is similar to that of the original greedy algorithm in Gerchberg and Saxton (Optik 35:237---246, 1972 ), where each iteration is a matrix vector product. Numerical results show the performance of this approach over three different phase retrieval problems, in comparison with greedy phase retrieval algorithms and matrix completion formulations.

References

[1]
Akutowicz, E.J.: On the determination of the phase of a Fourier integral, I. Trans. Am. Math. Soc. 83, 179---192 (1956)
[2]
Becker, S., Candes, E.J., Grant, M.: Templates for convex cone problems with applications to sparse signal recovery. Math. Prog. Comp. 3, 165---218 (2011)
[3]
Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications. MPS-SIAM series on optimization. Society for Industrial and Applied Mathematics: Mathematical Programming Society, Philadelphia, PA (2001)
[4]
Ben-Tal, A., Nemirovski, A., Roos, C.: Extended matrix cube theorems with applications to $$\mu $$μ-theory in control. Math. Oper. Res. 28(3), 497---523 (2003)
[5]
Ben-Tal, A., El Ghaoui, L., Nemirovski, A.S.: Robust Optimization. Princeton University Press, Princeton, NJ (2009)
[6]
Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont, MA (1998)
[7]
Bhatia, R.: Matrix Analysis, vol. 169. Springer, NewYork (1997)
[8]
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
[9]
Bunk, O., Diaz, A., Pfeiffer, F., David, C., Schmitt, B., Satapathy, D.K., Veen, J.F.: Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels. Acta Crystallogr. A 63(4), 306---314 (2007)
[10]
Candes, E.J., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241---1274 (2013)
[11]
Candes, E.J., Li, X.: Solving quadratic equations via phaselift when there are about as many equations as unknowns. ArXiv preprint arXiv:1208.6247 (2012)
[12]
Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Preprint (2008)
[13]
Candes, E.J., Eldar, Y., Strohmer, T., Voroninski, V.L: Phase retrieval via matrix completion. ArXiv preprint arXiv:1109.0573 (2011)
[14]
Chai, A., Moscoso, M., Papanicolaou, G.: Array imaging using intensity-only measurements. Inverse Probl. 27, 015005 (2011)
[15]
Chandrasekaran, V., Recht, B., Parrilo, P., Willsky, A.S.: The convex geometry of linear inverse problems. Found. Comput. Math 12(6), 805---849 (2012)
[16]
Chi, T., Ru, P., Shamma, S.: Multiresolution spectrotemporal analysis of complex sounds. J. Acoust. Soc. Am 118, 887---906 (2005)
[17]
d'Aspremont, A., Banerjee, O., El Ghaoui, L.: First-order methods for sparse covariance selection. SIAM J. Matrix Anal. Appl. 30(1), 56---66 (2006)
[18]
Delorme, C., Poljak, S.: Laplacian eigenvalues and the maximum cut problem. Math. Program. 62(1), 557---574 (1993)
[19]
Demanet, L., Hand, P.: Stable optimizationless recovery from phaseless linear measurements. ArXiv preprint arXiv:1208.1803 (2012)
[20]
El Karoui, N., d'Aspremont, A.: Approximating eigenvectors by subsampling. ArXiv:0908.0137 (2009)
[21]
Fazel, M., Hindi, H., Boyd, S.P.: Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices. In: American Control Conference, 2003. Proceedings of the 2003, vol. 3, pp. 2156---2162. Ieee (2003)
[22]
Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758---2769 (1982)
[23]
Gerchberg, R., Saxton, W.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237---246 (1972)
[24]
Goemans, M.X., Williamson, D.P.: Approximation algorithms for max-3-cut and other problems via complex semidefinite programming. J. Comput. Syst. Sci. 68(2), 442---470 (2004)
[25]
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115---1145 (1995)
[26]
Griffin, D., Lim, J.: Signal estimation from modified short-time fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(2), 236---243 (1984)
[27]
Harrison, R.W.: Phase problem in crystallography. JOSA A 10(5), 1046---1055 (1993)
[28]
Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6, 342---361 (1996)
[29]
Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)
[30]
Kisialiou, M., Luo, Z.Q.: Probabilistic analysis of semidefinite relaxation for binary quadratic minimization. SIAM J Optim 20, 1906 (2010)
[31]
Li, X., Voroninski, V.: Sparse signal recovery from quadratic measurements via convex programming. ArXiv preprint arXiv:1209.4785 (2012)
[32]
Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0---1 optimization. SIAM J. Optim. 1(2), 166---190 (1991)
[33]
Luo, Z.Q., Luo, X., Kisialiou, M.: An efficient quasi-maximum likelihood decoder for psk signals. In: Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03). 2003 IEEE International Conference on, vol. 6, pp. VI-561. IEEE (2003)
[34]
Miao, J., Ishikawa, T., Shen, Q., Earnest, T.: Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annu. Rev. Phys. Chem. 59, 387---410 (2008)
[35]
Moravec, M.L., Romberg, J.K., Baraniuk, R.G.: Compressive phase retrieval. In: Proc. of SPIE vol. 6701, pp. 670120---1 (2007)
[36]
Nesterov, Y.: A method of solving a convex programming problem with convergence rate $${O}(1/k^2)$$O(1/k2). Sov. Math. Dokl. 27(2), 372---376 (1983)
[37]
Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim Methods Softw. 9(1), 141---160 (1998)
[38]
Nesterov, Y.: Smoothing technique and its applications in semidefinite optimization. Math. Program. 110(2), 245---259 (2007)
[39]
Osherovich, E., Shechtman, Y., Szameit, A., Sidorenko, P., Bullkich, E., Gazit, S., Shoham, S., Kley, E.B., Zibulevsky, M., Yavneh, I., et al.: Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater. 11(5), 455---459 (2012)
[40]
Sanz, J.L.C.: Mathematical considerations for the problem of fourier transform phase retrieval from magnitude. SIAM J. Appl. Math. 45, 651---664 (1985)
[41]
Shor, N.Z.: Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25, 1---11 (1987)
[42]
Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Appl. comput. Harmon. Anal. 30(1), 20---36 (2011)
[43]
So, A.M.C.: Non-asymptotic performance analysis of the semidefinite relaxation detector in digital communications. Working paper (2010)
[44]
So, A.M.C., Zhang, J., Ye, Y.: On approximating complex quadratic optimization problems via semidefinite programming relaxations. Math. Program. 110(1), 93---110 (2007)
[45]
So, A.M.-C., Ye, Y.: Probabilistic analysis of semidefinite relaxation detectors for multiple-input, multiple-output. Convex Optim. Signal Process. Commun. 166 (2010)
[46]
Stewart, G.W.: Matrix Algorithms, Vol. II: Eigensystems. Society for Industrial Mathematics, Philadelphia (2001)
[47]
Stewart, G.W., Sun, J.: Matrix perturbation theory. Academic Press, Boston (1990)
[48]
Todd, M., Yildirim, E.A.: Sensitivity analysis in linear programming and semidefinite programming using interior-points methods. Math. Program. 90(2), 229---261 (2001)
[49]
Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3--a MATLAB software package for semidefinite programming. Optim. Methods Softw. 11, 545---581 (1999)
[50]
Voroninski, V.: A comparison between the phaselift and phasecut algorithms. Working paper (2012)
[51]
Waldspurger, I., Mallat, S.: Time-frequency phase recovery. Working paper (2012)
[52]
Wen, Z., Goldfarb, D., Scheinberg, K.: Block coordinate descent methods for semidefinite programming. In: Anjos, M., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 533---564. Springer (2012)
[53]
Yildirim, E.A.: An interior-point perspective on sensitivity analysis in semidefinite programming. Math. Oper. Res. 28(4), 649---676 (2003)
[54]
Zhang, S., Huang, Y.: Complex quadratic optimization and semidefinite programming. SIAM J. Optim. 16(3), 871---890 (2006)

Cited By

View all
  • (2024)DiffFPRProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3693222(28673-28687)Online publication date: 21-Jul-2024
  • (2024)Recursive Importance Sketching for Rank Constrained Least SquaresOperations Research10.1287/opre.2023.244572:1(237-256)Online publication date: 1-Jan-2024
  • (2024)Extreme Point Pursuit—Part I: A Framework for Constant Modulus OptimizationIEEE Transactions on Signal Processing10.1109/TSP.2024.345800872(4541-4556)Online publication date: 1-Jan-2024
  • Show More Cited By
  1. Phase recovery, MaxCut and complex semidefinite programming

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Mathematical Programming: Series A and B
    Mathematical Programming: Series A and B  Volume 149, Issue 1-2
    February 2015
    454 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 February 2015

    Author Tags

    1. 90C22
    2. 90C27
    3. 94A12

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)DiffFPRProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3693222(28673-28687)Online publication date: 21-Jul-2024
    • (2024)Recursive Importance Sketching for Rank Constrained Least SquaresOperations Research10.1287/opre.2023.244572:1(237-256)Online publication date: 1-Jan-2024
    • (2024)Extreme Point Pursuit—Part I: A Framework for Constant Modulus OptimizationIEEE Transactions on Signal Processing10.1109/TSP.2024.345800872(4541-4556)Online publication date: 1-Jan-2024
    • (2024)The Local Landscape of Phase Retrieval Under Limited SamplesIEEE Transactions on Information Theory10.1109/TIT.2024.348126970:12(9012-9035)Online publication date: 15-Oct-2024
    • (2024)Subspace Phase RetrievalIEEE Transactions on Information Theory10.1109/TIT.2024.338682170:6(4538-4570)Online publication date: 10-Apr-2024
    • (2024)Max-Linear Regression by Convex ProgrammingIEEE Transactions on Information Theory10.1109/TIT.2024.335051870:3(1897-1912)Online publication date: 1-Mar-2024
    • (2024)A graphic structure based branch-and-bound algorithm for complex quadratic optimization and applications to magnitude least-square problemJournal of Global Optimization10.1007/s10898-023-01305-988:1(115-137)Online publication date: 1-Jan-2024
    • (2023)Phase Retrieval via Model-Free Power Flow Jacobian RecoveryProceedings of the 14th ACM International Conference on Future Energy Systems10.1145/3575813.3597357(510-523)Online publication date: 20-Jun-2023
    • (2023)On Local Linear Convergence of Projected Gradient Descent for Unit-Modulus Least SquaresIEEE Transactions on Signal Processing10.1109/TSP.2023.332418171(3883-3897)Online publication date: 1-Jan-2023
    • (2023)An improved Fourier Ptychography algorithm for ultrasonic array imagingComputers in Biology and Medicine10.1016/j.compbiomed.2023.107157163:COnline publication date: 1-Sep-2023
    • Show More Cited By

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media